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Abstract

The ability of the software engineering community to achieve high levels of reuse from software
frameworks has been tempered by the difficulty in understanding how to reuse them properly.
When written correctly, a plugin can take advantage of the framework’s code and architecture to
provide a rich application with relatively few lines of code. Unfortunately, doing this correctly is
difficult because frameworks frequently require plugin developers to be aware of complex pro-
tocols between objects, and improper use of these protocols causes exceptions and unexpected
behavior at run time. This dissertation introduces collaboration constraints, rules governing how
multiple objects may interact in a complex protocol. These constraints are particularly difficult to
understand and analyze because they may extend across type boundaries and even programming
language boundaries. This thesis improves the state of the art through two mechanisms. First,
it provides a deep understanding of these collaboration constraints and the framework designs
which create them. Second, it introduces Fusion, an adoptable specification language and static
analysis tool, that detects broken collaboration constraints in plugin code and demonstrates how
to achieve this goal in a cost-effective manner that is practical for industry use.

In this dissertation, I have done an empirical study of framework help forums which showed
that collaboration constraints are burdensome for developers, as they take hours or even days to
resolve. From this empirical study, I have identified several common properties of collaboration
constraints. This motivated a new specification language, called Fusion, that is tailored for speci-
fying collaboration constraints in a practical way. The specification language uses relationships to
describe the abstract associations between objects and allows developers to specify collaboration
constraints as logical predicates of relationships. Since a relationship is an abstraction above the
code, this allows developers to easily specify constraints that cross type and language boundaries.
There are three variants of the analysis: a sound variant that has false positives but no false neg-
atives, a complete variant that has false negatives but no false positives, and a pragmatic variant
that attempts to balance this tradeoff. In this dissertation, I successfully used Fusion to spec-
ify and analyze constraints from examples found in the help forums of the ASP.NET and Spring
frameworks. Additionally, I ran Fusion on DaCapo, a 1.5 MLOC DaCapo benchmark for program
analysis, to show that Fusion is scalable and provides precise enough results for industry with
low specification cost.

This dissertation examines many tradeoffs: the tradeoffs of framework designs, the tradeoffs of
specification precision, and the tradeoffs of program analysis results are all featured. A central
theme of this work is that there is no single right solution to collaboration constraints; there are
only solutions that work better for a particular instance of the problem.
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Chapter 1
Object Protocols

Object-oriented programs frequently expect developers to follow protocols that describe how the
state of an object changes as operations are called on it and disallow some operations in some
states. The canonical protocol example is the usage of a File object, which transitions between
states as seen in the state machine in Figure 1.1. In this protocol, the read operation cannot be
called unless the file has been opened; once opened, the file must be closed for open to be called
again. Another canonical example is an Iterator, seen in Figure 1.2. The client of the Iterator
must always check the return value of Iterator.hasNext() before calling Iterator.next(). Ob-
ject protocols such as the File and Iterator protocols have been well studied; a large body of
research has been dedicated to discovering them using program analysis [70, 72, 89], specifying
and checking them statically [15, 29, 67, 83] and dynamically [18, 19, 82, 122], and even raising
them to the level of programming abstractions [115]. In industry, it is considered good practice to
document complex protocols, and there has been work to improve the quality of this documenta-
tion and make it more accessible to programmers when they need it [28, 105].

While prior work has made tremendous strides, there has been a glaring problem: as said
by Beck and Cunningham, “No object is an island.” [12] Objects interact with other objects, and
these multi-object interactions are governed by protocols more complex than protocols for a single

openedclosed

open

close
read

start

Figure 1.1: State machine of a typical File object protocol. The closed circle represents the start
of the protocol. The open circles are states in the protocol, and the arrows represent the valid
transitions from one state to the next. The doubled circle represents a valid end state for the
protocol. It is erroneous to call methods that are not transitions out of a particular state; for
example, read cannot be called from the closed state, and open cannot be called from the opened
state.
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hasNext() == true

next()

invalid

hasNext() == false

notEmptyvalid
start

Figure 1.2: State machine of a typical Iterator object protocol. Notice that all the states are valid
end states.

i.hasNext() == true

i.next()

invalid

i.hasNext() == false

notEmpty
i = c.iterator()

c.read()

c.modify()

c.read()

c.modify()

valid
start

Figure 1.3: State machine of a typical protocol with a Collection and an Iterator.

object. The canonical example here is of the protocol between a Collection and its Iterator, as
seen in Figure 1.3. In this protocol, an Iterator cannot be used after a modifying operation is
called on the Collection (though read-only operations are fine). Prior work on specifying and
statically checking protocols either cannot handle multiple objects or can only do so in a limited
way [15, 19, 67, 82, 83].

While multi-object protocols might not appear frequently in small, stand-alone programs, they
are common in reusable components such as software frameworks. The designs of these compo-
nents seek to be highly reusable, both in terms of amount of functionality provided by the com-
ponent and in terms of the number of potential clients. Chapters 2 and 3 show that multi-object
constraints occur more frequently in these situations. Additionally, these multi-object constraints
are significantly more difficult to understand and fix. While Figures 1.1 and 1.2 might be simplistic
enough to expect average developers to follow the protocols, the state machine that results from
more objects get very complex; Figure 1.4 provides one such example.

In this dissertation, I refine the concept of a multi-object protocol as a collaboration constraint. A
collaboration constraint is a state-based restriction on how multiple objects may interact. A multi-
object protocol can be thought of as a set of collaboration constraints, though Chapter 6 provides
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A(1,2)

B(1,3)

C(3,4)

E(4)E(4)

F(2)

start

A(1,2)

A(1,2)

A(1,2)

B(1,3)

C(3,4)D(3,4) D(3,4)

Figure 1.4: An abstraction of a complex multi-object protocol, from the example in Vignette 3.1 of
the ASP.NET framework. This protocol has six relevant operations (A-F) across four objects (1-4).
The operators are parameterized by specific objects, thus A(1,2) is the A operator with objects 1
and 2 as parameters. This protocol expresses multiple constraints: A(1,2) must always happen
before F(2), if E(4) happens then F(2) must eventually happen, and E(4) must be preceded by
B(1,3) and either C(3,4) or D(3,4).
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examples of collaboration constraints which would not traditionally be called protocols.
To help developers specify and analyze collaboration constraints, I have created a new ab-

straction called a relationship, which represents an abstract, named association between several
objects. Using the concepts of collaboration constraints and relationships, this dissertation has the
following thesis:

Collaboration constraints are inherent to the design of software frameworks but are burdensome
for plugin developers. These constraints can be defined by specifications that describe the re-
lationships among objects and how relationships change, and an adoptable static analysis can
check that code conforms to the specified constraints.

This dissertation makes three primary contributions to research and to practice:

1. Collaboration Constraints. Show that collaboration constraints arise out of the inherent trade-
offs of reusable component design and that collaboration constraints are burdensome for
developers.

(a) Section 2.1 provides a clear and useful definition of software frameworks that is driven
by industry constructs and designs. The definition provided is not limited to a particu-
lar design paradigm but abstracts over paradigms in a useful manner.

(b) Sections 2.1 and 2.2 use examples from industry to argue that collaboration constraints
are naturally arising phenomena of reusable components, particularly those called soft-
ware frameworks. This is a result of competing tradeoffs of utility, versatility, and us-
ability for these components.

(c) Chapter 3 provides empirical evidence that that the collaboration constraints described
are common in practice and are particularly problematic for developers.

(d) Section 3.3 uses several examples to identify four common properties of collaboration
constraints which must be handled by any specification language for them.

2. Relationships and Fusion. Show that the use of relationships is a practical means to specify
collaboration constraints that occur in Java and XML frameworks and that the collaboration
constraints from these frameworks matter in practice.

(a) Sections 4.1 and 4.3 define the relationship abstraction and demonstrate its ability to
specify collaboration constraints.

(b) Sections 2.3 and 3.3 demonstrate that collaboration constraints occur across language
boundaries, Section 5.4 shows that relationships are an abstraction that works across
programming language boundaries, and Chapter 6 and Appendix A demonstrate that
Fusion can specify constraints across both Java and XML in practice.

(c) Section 4.4 shows that the Fusion specification language handles the common proper-
ties of collaboration constraints, which is validated in practice in Section 6.3.

(d) Section 4.4 identifies several properties which are necessary for a practical specification
language and shows that Fusion has those properties, and Section 6.5 validates this in
practice on several real examples.
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3. Fusion Analysis. Present an adoptable static analysis of the specifications that can detect
violated collaboration constraints in plugin code.

(a) Section 4.2 describes the Fusion analysis, a static analysis which checks plugins for
conformance to collaboration constraint specifications and directs the developers to the
cause of any errors found. Chapter 6 validates that the analysis works as expected on a
case study of examples from Spring.

(b) Section 5.5 examines the aliasing challenges introduced by declarative files, and Section
5.6 provides a specification mechanism for reducing the resulting imprecision.

(c) Section 4.2 and Section 5.6 identify three variants of the analysis: a sound version, a
complete version, and a pragmatic version which is neither sound nor complete, but
instead balances the tradeoffs of false positives and false negatives. Chapter 6 provides
a case study that highlights several sources of imprecision for the static analysis, the
effect of this imprecision on the three variants, and the extent to which this imprecision
occurs in industry code.

(d) Chapter 7 provides a comparative analysis to a commercial tool to show that Fusion
has properties that are necessary for adoption in practice.

As can be seen from the above contributions, this work is a study of both a problem and a solu-
tion. Chapters 2 and 3 are dedicated solely to understanding the problem of software frameworks
and collaboration constraints. These chapters use both archival analysis and taxonomies to thor-
oughly understand the problem. To formally specify and detect broken collaboration constraints
in software frameworks, I have created the Fusion (Framework Usage SpecificatIONs) language
and static analysis, which is described in detail in Chapters 4 and 5. This solution is designed to
be adoptable by industry, and so I present two case studies to show that Fusion can specify and
detect violations of the kinds of collaboration constraints found in industry (Chapter 6) and that
there is evidence that this form of solution will be adoptable in practice, not just by researchers
(Chapter 7).

The work presented here builds on the lessons learned from many other prior specification
languages, and the static analysis presented has a theoretical foundation in shape analyses and
three-value logic analyses. Additionally, the grounding philosophy of this work, to provide a cost-
effective, adoptable means for detecting violations, was inspired by a number of systems which have
successfully transitioned from research prototypes to industry-quality tools. Chapter 8 covers this
past work and it is brought up in relevant locations in Chapters 4, 5, and 7. Finally, there have been
many other proposals for specification languages and static analyses to detect protocol violations,
including typestate, tracematches, and session types. Chapter 8 also provides a detailed analysis
of these systems and how they are all interrelated to each other and to Fusion.
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Chapter 2
Software Frameworks

Software frameworks are an extremely popular form of code reuse in a variety of domains in-
cluding graphical user interfaces (LISA [98], MFC [102], AWT/Swing [113]), web applications
(ASP.NET [76], Spring [121], Ruby on Rails [27]), parallel computing (Hadoop [8], OpenMPI [119]),
developer tools (Eclipse [116], JUnit [117]), and even social networks (Facebook [32]). The popular-
ity of software frameworks stems from the large reuse benefits which they provide. With relatively
few lines of code, software frameworks allow developers to create large and complex applications
that are customized for a specific purpose, unknown to the developers of the framework.

While the reuse benefits that frameworks provide make them worthwhile despite high costs,
they are notoriously difficult to use, design, and document. There has been significant work to-
wards improving the usability of framework designs. Johnson’s work on frameworks described
them as compositions of design patterns [60, 61], and this was used by several others to formalize
the design of frameworks by specifying the design patterns [38, 52, 106]. There has also been sig-
nificant work on better documenting frameworks, with the primary idea being tutorial-style use
cases to describe the patterns of usage, rather than the patterns of design [33, 42, 74, 93].

Even with the improved understanding of framework designs and documentation from re-
search literature and industrial best practices, frameworks remain difficult to use. This is not due
to lack of expertise in software design; many of the most popular frameworks are designed by
experts in the field: Kent Beck and Erich Gamma designed JUnit, Josh Bloch designed Java Collec-
tions, and Krzysztof Cwalina designed the .NET Framework APIs. While all of these frameworks
are very successful, they are not without usability problems, some of which are featured in this
dissertation. This implies that perhaps framework designs have properties that make it inherently
difficult to increase the usability of their APIs.

This chapter explores the designs of several modern, popular software frameworks to support
contributions 1a, 1b and 2b. This investigation starts with an architectural definition of software
frameworks. From this, I identify several quality attributes that are essential to framework designs
and make software frameworks distinct from other forms of module-based reuse, such as libraries,
toolkits or product lines. The chapter explains that since software frameworks aim to increase both
versatility and utility, some amount of unusability is actually essential to the design of software
frameworks. Additionally, the chapter shows how the relatively new practice of depending on

7
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declarative artifacts in framework designs has both provided further levels of reuse yet increased
the complexity of these designs further than ever before.

Throughout this chapter, I introduce and reference vignettes where a plugin developer is at-
tempting to reuse a software framework. The vignettes in this chapter are from the ASP.NET web
application framework, a software framework for creating a group of web pages that link together
to form an application. These vignettes illustrate several arguments within this chapter and are
referenced in later chapters.

2.1 An architectural definition of software frameworks

Software frameworks are known to be difficult to design and use, but what exactly makes a piece
of software a framework? What makes a software framework different from other reusable mod-
ules, like libraries and toolkits? How do software frameworks compare to product lines? In this
section, I’ll give an overview of several definitions of software frameworks, but I will ultimately
argue for an architectural definition of software frameworks.

Software frameworks originally came from the object-oriented community, and as such, they
were defined in OO terms.

A framework is a reusable design of all or part of a system that is represented by a set of abstract
classes and the way their instances interact. [61]

However, OO-based definitions are too narrow in practice; the term “framework” is now applied
to software that uses non-OO mechanisms as the primary way to interact with the client code.1

Others in the community have taken the approach that a software framework has an inherent
property: inversion of control. Inversion of control means that the framework controls the flow
of data and the flow of execution through the program. This is in contrast to a library, where
the application calls the library and is in control of the execution and data. This idea that the
framework “calls back” to the application is also known as the Hollywood Principle (“Don’t call
us; we’ll call you”) and is commonly found in descriptions of frameworks.

The Hollywood Principle is a key to understanding frameworks. It lets a framework cap-
ture architectural and implementation artifacts that don’t vary, deferring the variant parts
to application-specific subclasses. [120]

However, this description is still not ideal, as callbacks are a common paradigm throughout soft-
ware. For example, many collection libraries will sort a collection by calling back to a provided
sort function, yet clearly this software does not have the complexity of those that we term soft-
ware frameworks, like ASP.NET or Eclipse. Additionally, frameworks may not use callbacks for
all features; frameworks are increasingly turning to in-code annotations and configuration files.
Therefore, definitions based on inversion of control end up both excluding more modern frame-
works, yet including simpler forms of reuse.

1Many framework designs retain some OO elements and use objects, however, inheritance is no longer the primary
reuse mechanism.
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My view of software frameworks stems from software architecture concepts. For purposes of
this thesis, I define the term software architecture in the same way as Bass, Clements, and Kazman
[11].

Definition 1 (Software Architecture). The software architecture of a program or computing system is
the structure or structures of the system, which comprise software elements, the externally visible properties
of those elements, and the relationships among them.

One type of software element is a module.

Definition 2 (Module). A module is a cohesive unit of code with an interface to use the code.

From these definitions, I define a framework, and the associated term plugin, in architectural
vocabulary.

Definition 3 (Software Framework, or just Framework). A software framework is a set of reusable
modules that requires that their clients conform to a predefined architecture.

Definition 4 (Plugin). A plugin is a module that extends a framework and works within the constraints
of a framework’s defined architecture to add specific functionality. 2

A software framework is a module of code that implements and enforces a software architec-
ture. This view is shared by industry developers; the only definition I found which described
frameworks in architectural terms was in the book “Software Factories”, by two Microsoft em-
ployees [45]. 3 It is very important to notice that a framework is not simply a set of modules
with a protocol for how to access some reusable functionality. In fact, a framework may have very
little functionality; it may only be an implementation to connect plugins together. Regardless, the
framework encapsulates the architecture for the final system. Consider the following examples:

• Open|SpeedShop [118] is a framework for creating distributed dynamic analyses. It has
several types of plugins: wizards set up an experiment to run, collectors gather the data, ag-
gregators put data together, analyses run some computation on the data, and views display
the results to the user. While the framework does provide some functionality, its primary
purpose is connecting these plugins into a pipe-and-filter architecture. In fact, the reusable
functionality it provides is handled by some built-in libraries; the framework itself just loads
components and connects them together.

• Eclipse [116] is a framework for developer tools. Eclipse provides a mechanism for plugins
to define their own extension points, so that plugins in Eclipse can also be small frameworks
and have their own plugins. Eclipse loads the plugins and connects them together in an
architecture that resembles an acyclic graph of frameworks and plugins.

2It is interesting to notice that a plugin may be developed by the person who is composing the plugin with the
framework, by a third-party, or even by the framework developer. Who develops the plugin is a separate issue from
what it is.

3In this book, they say that “A framework is developed to bootstrap implementations of products based on a com-
mon architectural style.” However, this definition is not quite right as a framework is not solely about bootstrapping.
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• Spring [121] is a framework for web applications. Each web application that uses Spring
must adhere to a model-view-controller architecture. Like Open|SpeedShop, Spring pro-
vides some reusable functionality as well, but this functionality is packaged into libraries. In
Spring, these libraries may also be plugins and can be replaced by other plugins.

• ASP.NET [76] is another framework for web applications, which also uses a model-view-
controller architecture. Unlike Spring, ASP.NET requires complete buy-in to their frame-
work with few alternative options for the given libraries. That is, developers who use
ASP.NET are required to use it for their entire system and must use Microsoft modules for
many pieces. However ASP.NET, does provides plugins with many points for variation
within the given modules, as can be seen in Vignette 2.1.

Of course, frameworks are not the only form of reusable code. Other reusable codebases go
by the names of library or toolkit.4 While there is no fully agreed on definition for these terms
either, they are frequently used to describe code that contains functional reuse, but not architec-
tural reuse. For example, a collections library, an XML parsing library, and a UI controls toolkit all
provide significant reusable functionality. However, using libraries and toolkits do not typically
impact the architecture of the application; such libraries are used by applications from many do-
mains and with very diverse architectures. A library will frequently commit a developer to a set of
abstractions, and switching to a different library would indeed require significant code changes to
use the new abstractions. However, a library does not dictate how its abstractions appear in the ar-
chitecture of the system using it, and changing to a different library with equivalent functionality
would not affect the architecture of the application.

The primary difference between a framework and libraries or toolkits is that, while frame-
works do frequently provide reusable functionality, they primarily provide a reusable architec-
ture. In each of the four frameworks above, large portions of the functionality could be replaced,
or even removed, and what would remain would still be a software framework. In fact, any re-
placed functionality would still have to conform to the framework’s architecture. It’s also impor-
tant to notice that while all of these frameworks also use OO designs, the designs are not purely
object-oriented. The four designs above use configuration files, aspects, and dependency injection;
objects are only a part of how they interact with plugins. Therefore, I argue that a framework is
not simply a set of modules with reusable, object-oriented functionality, or even a reusable object-
oriented design. While a framework may contain OO designs, a framework is primarily a set of
modules that encapsulates a reusable architecture.

Since a plugin must adhere to the architecture provided by the framework, architectural mis-
match, as originally defined by Garlan, Allen, and Ockerbloom [44], is a serious problem for plu-
gins. Vignette 2.1 provides an example where a plugin runs into problems because it does not
adhere to the given architecture. Plugin developers must take care to fully understand the archi-
tectural implications of using a particular software framework and the potential consequences of
combining several frameworks in a single application. When viewed from an architectural per-
spective, it is no surprise that frameworks can be difficult to use, even for experienced developers,
as they are a working example of architectural mismatch.

4In practice, these terms seem to be nearly interchangeable, though library generally implies a single cohesive mod-
ule and toolkit implies a related set of smaller modules.
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Plugin Vignette 2.1: Lifecycle
The ASP.NET web application framework allows a developer to create a plugin that corresponds to a

web page in a web application. By creating several plugins and connecting them together with links, the
developer creates a complete web application. When a user requests a web page, an HTTP request is sent
to access that page, and the framework uses the provided plugin to generate the HTML for the page and
return it back to the user.

At the highest level of abstraction, the ASP.NET framework uses a stateless client-server architecture
to interact with the user. This architecture is abstracted as much as possible from the plugins, to the
level that plugins can even pretend to be stateful because the server handles the storing and reloading
of state. Any use of this stateful abstraction must be done through the framework provided mechanisms
and according to a given protocol. Otherwise, the plugin is not aware of, and has no control over, the
client-server architecture.

There is a lower-level architecture that the plugin must be aware of: the ASP.NET framework requires
plugins to adhere to a model-view-controller architecture. All plugins must conform to this architecture and
are composed of three pieces:

• View The plugin provides an ASPX file that represents a static view of the web page. ASPX is HTML
with features specific to ASP.NET, and the framework will process this file into raw HTML later.

• Model ASP.NET uses the model to reify state into the stateless HTTP protocol. It does this by creating
the model based upon the HTTP request from the user for a page and the saved state from prior
requests to the page. The plugin can change this model in the controller.

• Controller The plugin provides a “code-behind” class, written in either C# or VB.NET, that defines
events that happen in response to user actions. Additionally, this controller can dynamically change
the view and the model through a series of callbacks from the server, as described in more detail
below.

To create the HTML for a user request, the ASP.NET framework processes the ASPX file into HTML.
This is a multi-step process, and while this process takes place, the framework makes a series of calls to the
code-behind class. This series of calls is known as the page lifecycle, and it occurs on every user request
of a page. Lifecycle calls allow the plugin to perform dynamic modifications to the page. For example,
the code-behind class can use the callbacks to populate values to the controls or even dynamically add or
remove controls.

The most commonly used lifecycle methods are PreInit, Init, and Load (though there are eight others
that can be used). PreInit is called before the framework begins processing the ASPX, so the controls on
the page are not initialized yet. Init is called after the controls are initialized from the ASPX, but before they
are loaded with their stateful data. Load is called after the framework has loaded stateful data back into the
controls.

It’s very important for developers to understand how this lifecycle works, as misusing the lifecycle results
in null references [95], disappearing controls [111], and missing user input [10]. Each of these problems
was seen on the ASP.NET help forums, and the posters of the problems were each instructed to read the
Page Lifecycle documentation [78].

As an example of how misusing the lifecycle results in unusual problems, consider the code in Listing
2.1 from the ASP.NET help forums. The purpose of this code is to set the initial values in the drop down
list called DateYear, which is defined in the associated ASPX file. However, the code was throwing a null
reference exception at line 15.

Listing 2.1: Incorrect usage of the page lifecycle
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1 Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.PreInit
2

3 ’Generate years for drop down menu
4 Dim Dates As New Collections.Generic.List(Of System.DateTime)
5 ’Dates.Add(System.DateTime.Now)
6

7 If Not Me.IsPostBack Then
8 ’ Add next 5 years
9 For i As Integer = 0 To 4

10 Dates.Add(System.DateTime.Now.AddYears(i))
11 Next
12 End If
13

14 ’ DateYear is a statically declared DropDownList
15 Me.DateYear.DataSource = Dates

16 Me.DateYear.DataTextField = "Year"

17

18 Me.DateYear.DataBind()

19 End Sub

Three other developers responded with possible problems in the code, but each potential issue they
raised turned out to be implemented correctly. Finally, the one of the responding developers found the
mistake on line 1 of Listing 2.1.

Sorry just noticed the event you are using! PreInit. You should be using init for this.
You need to read the page life cycle overview http://msdn2.microsoft.com/en-us/library/
ms178472.aspx

CreateChildControls will be called on the control between these two events.

As described earlier, the PreInit callback happens before any controls are initialized, so the field
DateYear is still null. However, the Init callback guarantees that all statically declared controls exist, though
they have no data yet, and is the appropriate place to load this data. In several other forum postings, devel-
opers confused the Init and Load events, which results in either no data (if the developer created controls
in Load, after the data loading occurred) or null references and clobbered data (if the user attempt to read
or write the control’s data while in the Init callback, before data loading occurred).

Each of these problems occurred not because of a simple coding error, but because the plugin de-
veloper misunderstood the architectural implications of using the framework. The plugin developer had to
be aware not just of the available method calls and the local pre- and post-conditions, but also how these
methods are used in the more global architecture. The plugin developer must be aware that in ASP.NET,
they are buying into a stateless client-server architecture that will represent statefulness through a model-
view controller sub-architecture. Not adhering to these architectural considerations and tradeoffs results in
defective plugins.

2.2 The essential complexity of software frameworks

With an architectural definition of software frameworks in hand, the questions of why software
frameworks are difficult to design, document, and use becomes more tractable. Software frame-
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Figure 2.1: Graphic depiction of the extremes of usability, utility, and versatility for a reusable
module. The left column depicts high levels of the quality attributes, while the right column
depicts low levels.

works are difficult to design, document, and use because of the essential complexity of building
code that encapsulates a reusable software architecture.

Since the goal of a software framework is to create a reusable software architecture, the design
of a software framework must embed many quality attribute tradeoff decisions. This of course
holds true for any software architecture design: the designer must carefully weigh the tradeoffs
among several quality attributes, such as performance, modifiability, usability, and security, ac-
cording to the purpose and goals of the system [11].

Designing a good architecture is known to be difficult, but the problem is compounded in the
case of software frameworks. In addition to considering the quality attributes demanded by the
domain of the software framework, all reusable modules have three additional quality attributes
to consider. These three quality attributes can be thought of as three aspects of reusability. In addi-
tion to being defined below, the extreme ends of these quality attributes are depicted graphically
in Figure 2.1.

• Usability is the ease of using the module’s API to achieve reuse of the module’s implemen-
tation. For a module to have high usability, it ought have a simple, well defined API with as
few points of variation as possible [63], and any points of variation must follow a systematic
pattern that can be readily understood. While usability is relative to an individual’s experi-
ence, one module might still be considered more usable than another, by both novices and
experts alike.
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• Utility is the amount of reuse achieved by a single reuser of the module. By increasing
utility, reusers lower their total development costs through the reused code. For a module to
have high utility, it must provide as much reusable code as possible for applications that use
it. This includes code for functional reuse and code for architectural reuse. It is important
to notice that this refers to the amount of code reused to achieve some goal and not the
frequency by which this code is reused. It is also important to note that utility is a measure
that is relative to the size of the reuser; this is explained with an example below.

• Versatility is the scope of potential reusers of the module. For a module to have high ver-
satility, it must be reusable by as many potential applications as possible, including future,
unanticipated applications. To do this, it must be highly flexible so that it can be modified
and reused by a wide range of applications. This can be thought of as the frequency of reuse
for a module.

Clearly, it is desirable for a reusable module to have high levels of usability, utility, and versa-
tility in order to maximize its impact on the world (and consequently, its profit margins). How-
ever, even without considering other desirable quality attributes from the domain, these three are
in conflict with one another. Figure 2.2 illustrates the tradeoff space, with examples of reusable
modules that select different tradeoffs. While it is difficult to maximize all three of these quality
attributes, Figure 2.2 shows the ways that two of these quality attributes are reasonably met in a
reusable module.5

Region 1 represents libraries and toolkits, such as the Java Collection and I/O libraries. Such
libraries are intended to be easy to use and to be reused by as many applications as possible (high
usability and high versatility). However, they each provide a limited scope of features, such that
a developer must add a lot to make a complete application (low utility). While many libraries,
such as the Java I/O library, do provide large amounts of code reuse, it is not possible to create
a significant application with only using this library and a few lines of code. Like all reusable
components, libraries and toolkits do provide significant amounts of code reuse, but they do not
provide enough to be able to build an application without even more custom code.

Region 2 represents product line systems, such as those created by a company to be reused
in all their systems. Like frameworks, product lines impact the architecture of the clients for the
purpose of increasing utility. These systems are designed to be easy to use so that training costs
are low and to provide significant amounts of reuse for those products within the scope of the
company’s interests (high usability and high utility). However, as the product line would never
be used outside the company, they can tightly control the scope of applications which might reuse
the product line (low versatility).

Region 3 represents software frameworks such as those described earlier in this chapter and
throughout this thesis. In order to increase their impact in software, many of them aim to be as
general purpose as possible (high versatility) and to provide extraordinarily high levels of utility.
While the cost of this is low usability, this is deemed worthwhile if the users are expected and
willing to stick through the steep learning curve and become a member of a community that
continues to use the framework for years.

5The astute reader will notice that Figure 2.2 describes the generality-power tradeoff, well-known to be a concern
within software architecture, with an extra dimension to describe usability.
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Figure 2.2: The tradeoff space for the quality attributes of usability, utility, and versatility for a
resusable module. The small circle represents Ruby On Rails using their built-in scripts to create
web applications, the small square represents using Ruby on Rails without the scripts.

It is exceedingly difficult to maximize all three quality attributes. Consider the case of a module
with a small, highly usable API. If this module has maximized utility as well, then there is a lot
of code behind that API. Of course, this code cannot be customized arbitrarily, as allowing that
would necessarily make the API more complex, so the module can only be used by a few clients
that wish to reuse it within its existing variability limits.

Let us try again from another approach: we can imagine a module, again with a small API,
that is highly versatile and can be reused by many clients. To do this though, it must not be able
to provide much functionality, as each added feature would increase the size of the API in order
to give all clients the ability to customize it. The only way for a module to be usable and versatile
is to provide relatively little utility.

It is important to note that the tradeoff with usability exists regardless of programmer experi-
ence or of a particular programming language abstraction. While an experienced developer might
find the Collections library more usable than a student would, both an expert and a novice will
find Eclipse to be a relatively less usable framework. Likewise, new abstractions in programming
languages may increase the usability of all applications. However, as Eclipse attempts to maximize
both utility and versatility, it will always be less usable than the Collections library, regardless of
the abstraction chosen, as the Collections library attempts to maximize utility and usability. A
new abstraction (like object-oriented programming, architectural styles, and many others) may
shift the entire design space to make it all easier to use, but the core tradeoff, though weakened,
will remain.

The tradeoff space in Figure 2.2 is not a discrete space and is somewhat blurry. For example,
a reusable module may have sub-modules that exist in different parts of the space when viewed
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by themselves; for example, many frameworks and product lines contain internal libraries. Addi-
tionally, a module may shift location in this space depending on how it is reused. As an example,
consider Ruby on Rails, a web application framework. The developers of this framework brag
about being able to create a web application in only 15 minutes [49]. Unfortunately, the scope of
possible web applications that can be made in this way is limited to a predefined set, so Ruby on
Rails exists in the lower left corner alongside product-line systems. However, Ruby on Rails does
provide a different mechanism for creating more complex web applications; doing this requires
both more code and uses more complex APIs, so the tradeoffs of Ruby on Rails shift to the right.
In cases like this, it’s possible to think of the module as actually having two separate APIs; one for
beginner use and one for expert use. This is fairly common for reusable modules and can be seen
in both the Swing GUI framework [113] and the Crystal static analysis framework [87].

The result this tradeoff is that frameworks are inherently difficult to use, even when designed
well. If the designer of a framework made the decision to create a reusable software architec-
ture that can be reused by a wide variety of applications and provide them with maximum reuse
benefit, it is no wonder when the framework suffers from usability problems. Given these trade-
offs, software frameworks will always exist because of their utility and versatility for reuse, and
developers will have to live with the usability consequences.

These sections show Contribution 1b of this thesis. The usability of a framework’s API, the
versatility of the framework, and the utility of the framework are at odds with each other, and
the business drivers of software frameworks mean that versatility and utility will be chosen over
usability. Chapter 3 investigates the resulting usability problems further. The remainder of the
thesis addresses this issue by providing a program verification technique that can help plugin
developers find the defects that occur as a result of a difficult to use API.

2.3 An added twist: declarative artifacts

There is one additional twist to current software frameworks that is relevant for this thesis. Tradi-
tionally, software frameworks have used object-oriented programming techniques as the primary
abstraction for reuse and communication with plugins. In recent years, declarative artifacts have
become a popular secondary abstraction: Eclipse, ASP.NET, and Apache Server all require their
plugins to create declarative artifacts. At first glance, these declarative artifacts do not even appear
to be program code, and they might be considered a non-code artifact similar to image resources
or translations for internationalization. In fact, as these declarative files might contain data spe-
cific to a particular runtime environment, in some circumstances they might not even be checked
into a code repository.

How prevalent are these declarative artifacts? In a study done with Kevin Bierhoff, George
Fairbanks, and Jonathan Aldrich, we found 11 industry frameworks that are using declarative ar-
tifacts; the full list of 17 frameworks that we studied can be found in Table 2.1. Declarative artifacts
were used for a wide variety of purposes, including user interfaces, architecture configuration at
runtime, descriptions of data formats and validation, deployment configuration, and server con-
figuration. In all of these cases, a pure OO design would not have met the needs of the system,
though some of the frameworks still provide the OO mechanisms.
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Table 2.1: Summary of results from an archival analysis of 17 industry frameworks.

Framework Language Declarative Artifacts?
Apache HTTP Server C Yes
Applets Java No
ASP.NET C#, VB.NET Yes
AWT/Swing Java No
Corba Various No
Eclipse Java Yes
Enterprise Java Beans Java Optional
Facebook PHP and Various Yes
JUnit (and related) Various No
MFC C++ Yes
OpenMPI C No
Ruby on Rails Ruby Yes
Servelets Java Yes
Spring Java Yes
WebOjbects Java Yes
WinForms C# and Various Yes
XSever C No

Declarative artifacts allow for additional modifiability that is not offered by traditional pro-
gramming abstractions. In particular, they allow modifiability through time, through environ-
ments, and through the person doing the modification (the modifier). I explain each of these
concepts in turn.

Modifications through time. As declarative artifacts are not evaluated until run time, they can
be modified without recompiling. This allows for certain, predefined modifications (like the loca-
tion of a database) to be easily made post-compilation.

Modifications of the environment. Because declarative artifacts are modifiable through time
and are not tied to program code, they can be modified separately for each environment that
the system is deployed in. Following the database example once again, we can quickly deploy a
system to multiple locations, without modifying any code, by editing a declarative artifact that
specifies the location of the database for the particular deployment environment. This enables a
company to develop and deploy complex product line systems with relatively little effort.

Modifications from unusual modifiers. Finally, declarative artifacts can be created for specific
non-programmers so they can modify the program without accessing the program code. These
non-programmers might include UI designers, IT administrators, or even end users. Using declar-
ative files, people from each of these groups can complete their modification tasks with little in-
volvement from a software developer. In the database example, the declarative artifact can be
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changed by an IT administrator in response to new changes in the deployed environment. As a
further example, Vignette 2.2 features an ASP.NET plugin that uses a declarative artifact for the
user interface. In my experience at LEVEL Studios, this allowed the UI designers to modify the
design of the web page in parallel with the software developer creating the functionality.

As practical as these declarative artifacts are for modifiability, they are not addressed in any
known general purpose program verification systems.6 As seen in Vignette 2.2, these artifacts are
tied with the code to the extent that verifying the code alone is not useful; the declarative files and
program code must be verified together.

This section supports Contribution 2b by showing that declarative files are used extensively in
software frameworks. Later chapters of this thesis identify the specific usability problems that oc-
cur across language boundaries (Chapter 3) and show how to verify code across these boundaries
(Chapter 5). This thesis describes the first system to verify declarative artifacts alongside program
code.

Plugin Vignette 2.2: LoginView
On the ASP.NET forums, a developer reported that he was attempting to retrieve a DropDownList within

his code-behind file, but his code was throwing a NullReferenceException [101]. His plugin uses a
LoginView control, which allows developers to display some controls if the user is logged in, and other
controls if the user is not logged in. It achieves this by having two templates that represent these states, as
shown in the developer’s ASPX file in Listing 2.2.

Listing 2.2: ASPX with a LoginView
1 <asp:LoginView ID="LoginScreen" runat="server">
2 <AnonymousTemplate>

3 You can only set up your account

4 when you are logged in.

5 </AnonymousTemplate>

6 <LoggedInTemplate>

7 <h4>Location</h4>

8 <asp:DropDownList ID="LocationList"
9 runat="server"/>

10 <asp:Button ID="ContinueButton"
11 runat="server" Text="Continue"/>

12 </LoggedInTemplate>

13 </asp:LoginView>

Listing 2.3: Incorrect way of retrieving controls in a LoginView
1 LoginView LoginScreen;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 if (!isPostback()) {
6 DropDownList list = (DropDownList) LoginScreen.FindControl("LocationList");

6[6] addresses them for Ruby on Rails, but this solution is specific to the Ruby on Rails framework. Likewise, [109]
provides simple verification for Spring.
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7 list.DataSource = ...;

8 list.DataBind();

9 }

10 }

The developer properly set up a LoginView, including the DropDownList within it, in the ASPX file. The
developer then went to his code-behind file in Listing 2.3, and in the initialization event, attempted to set up
the DropDownList with data when the page is viewed for the first time. The typical way to get a sub-control
is to call Control.findControl with the appropriate name; findControl will return null only if there is no
sub-control with that name. While line 7 was throwing a NullReferenceException since list was null, the
developer was confused because he had used exactly the name he declared in the ASPX file.

Another developer responded to the post and explained this unusual error. The original developer did
correctly set up his controls so that the DropDownList would only show when the user is logged in. However,
the LoggedInTemplate does more than just make the controls invisible if no user is logged in; the controls
will not even exist in memory unless a user is logged in. Therefore, if a developer wishes to set up data
in these controls, he must do so before the control is displayed, but only if the user has logged in. This
constraint make more sense from a security perspective; we do not want any chance of the data within that
control leaking out of the system, so it does not exist at all until necessary. The solution proposed was to
first check the login status from Request.isAuthenticated(), using the page’s Request object, as shown
in the corrected Listing 2.4.

Listing 2.4: Correct way of retrieving controls in a LoginView
1 LoginView LoginScreen;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 Request myRequest = getRequest();

6 if (!isPostback() && myRequest.isAuthenticated()) {
7 DropDownList list = (DropDownList) LoginScreen.FindControl("LocationList");

8 list.DataSource = ...;

9 list.DataBind();

10 }

11 }

This example quickly becomes more complex if we want to show different controls to different kinds
of users. The LoginView also allows us to do this by creating many RoleGroups and associating each
with user role, as shown in Listing 2.5. If we also want this functionality, we must check the properties
of the logged-in user (Listing 2.6) to determine whether a control is accessible. This adds a great deal of
complexity to the plugin, and it is compounded if a user is specified in more than one LoginTemplate.

Listing 2.5: ASPX with a LoginView and multiple RoleGroups
1 <asp:LoginView ID="LoginScreen" runat="server">
2 <AnonymousTemplate>

3 You can only set up your account

4 when you are logged in.

5 </AnonymousTemplate>

6 <RoleGroups>

7 <asp:RoleGroup Roles="Registered">

8 <ContentTemplate>

9 <asp:Button ID="ContinueRegistered"
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10 runat="server" Text="Continue"/>

11 </ContentTemplate>

12 </asp:RoleGroup>

13 <asp:RoleGroup Roles="Admin">

14 <ContentTemplate>

15 <h4>Location</h4>

16 <asp:DropDownList ID="LocationList"
17 runat="server"/>

18 <asp:Button ID="ContinueAdmin"
19 runat="server" Text="Continue"/>

20 </ContentTemplate>

21 </asp:RoleGroup>

22 </RoleGroups>

23 </asp:LoginView>

Listing 2.6: Correct way of retrieving controls in a LoginViewwith a RoleGroup
1 LoginView LoginScreen;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 Request myRequest = getRequest();

6 if (myRequest.isAuthenticated() && getUser.isInRole("Admin")) {
7 DropDownList list = (DropDownList)

8 LoginScreen.FindControl("LocationList");

9 list.DataSource = ...;

10 list.DataBind();

11 }

12 }



Chapter 3
Object Collaborations

No runtime entity exists independently in software, whether it be an object, component, or func-
tion. These entities interact with each other in structured ways to make a useful program. As pro-
grammers, we manipulate how these entities interact by performing operations, such as invoking
methods, passing in arguments, setting stateful fields, and sending or receiving data through a
port.

Vignette 2.2 describes a programmer who must work with several objects that interact together
(the page, the request, and the controls) in order for his application to produce the desired behav-
ior (only show the drop down list when the user is logged in). The situation described by this
vignette is an example of a collaboration.

Definition 5 (Collaboration). A collaboration is the interaction of several objects, through operations,
in order to achieve some goal in the program.

The example is a fairly complex collaboration among objects, but smaller collaborations, such as
that between an object, a collection it is in, and an iterator over the collection, happen regularly in
programs.

Collaborations among objects are frequently constrained in some way. For example, a list may
require that all objects that are added to it be in a particular state. It is possible that the list checks
this requirement, or perhaps the item itself does, but it is also possible that the list assumes that
the caller is responsible for enforcing this constraint. Therefore, the programmer must always be
aware of which constraints she must abide by; failing to do so may result in unexpected runtime
behavior. I refer to constraints on how several entities collaborate as collaboration constraints. These
constraints require that, in order to call an operation (ie: adding an item to a list), the objects
involved in the collaboration exist in a certain state relative to each other (ie: the item exists in a
particular state). Vignettes 2.1, 2.2 and 3.1 all contain examples of collaboration constraints.

Definition 6 (Collaboration Constraint). A collaboration constraint is a pre-condition to an operation.
This pre-condition is expressed as a predicate on the abstract states of several objects.

Collaboration constraints occur with high frequency in software frameworks. As Chapter 2
describes, frameworks emphasize versatility and utility. In order for a framework to be highly

21
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versatile, it might provide mechanisms for the plugin to manipulate the internal representations
of the framework and change how these objects collaborate. At every point where a framework
opens this internal representation, there are implicit constraints on how the plugin may manip-
ulate the collaboration. When a framework also aims to increase utility, it must also provide a
larger API and therefore a larger, more complex internal representation. This makes the implicit
collaboration constraints even more confusing for a plugin developer.

This chapter makes three contributions to this dissertation. First, it provides evidence that
collaboration constraints are common in practice and are burdensome on plugin developers (Con-
tribution 1c). Second, this chapter identifies four important properties of collaboration constraints
that both contribute to their complexity and make them difficult to specify (Contribution 1d). Fi-
nally, this chapter shows that one of the common properties of collaboration constraints is that
they may work across language boundaries (Contribution 2b). To provide evidence for these con-
tributions, this chapter uses an archival analysis of postings on the ASP.NET help forums.1

3.1 Why examine forums?

We can directly observe how difficult it is to use frameworks by inspecting posts on developer help
forums, such as those for ASP.NET and Spring. I have made the following assumptions about the
situation of a developer who is posting on a help forum:

• The developer has probably spent several hours trying to figure out the problem himself by
searching for tutorials and documentation.

• The developer has probably asked his colleagues, who also did not know how to fix the
problem.

• The developer has decided that it would be more efficient for him to anonymize the code,
post it, and wait possibly several days for a response, rather than continue to puzzle it out
alone.

This chapter provides some evidence that these assumptions are valid. While it is possible that
some developers go to the forums immediately upon having a problem, the usage patterns of the
forums and the resolution time of posts shows that this is unlikely behavior for most developers.

The developers who respond to these posts are either more advanced developers or consul-
tants and employees of companies that will benefit from others using this framework successfully.
For example, some Microsoft teams require that employees spend several hours each month an-
swering developer questions on the Microsoft help forums. Many consultants also answer ques-
tions on the forums in hopes of selling their own third-party products or finding new clients.
Figure 3.1 describes the affiliations of the top 25 posters on the ASP.NET and Spring help forums;
notice that most of them are answering questions on the forums for indirect financial gain and are
therefore motivated to spend time providing good answers.

The number of posts per user is also exceedingly skewed; as seen in Figure 3.2, a very expert
few users are doing most of the posting.2 On the Spring forum, all of the users with more than

1This analysis also led to the discovery of Vignettes 2.1 and 2.2.
2Unfortunately, I could not gather data on ASP.NET for technical reasons.
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(a) ASP.NET (b) Spring

Figure 3.1: Corporate affiliations of the top 25 members of the Spring and ASP.NET help forums.
Data gathered on April 12, 2011. Corporate affiliations determined by users’ self-descriptions of
their companies and positions. In both cases, the developers from Microsoft or SpringSouce were
clearly labeled. Consultants are members who made it clear that their primary source of income
was in consulting for use of the framework; most had books, blogs, and speaking arrangements
listed. Other developers are people who use the framework as part of a job in another company.
Unknowns are likely also other developers who chose to keep their affiliation private. In the
figures, “average posts” refers to the average number of posts per user in that category, of those
in the top 25 members.

Figure 3.2: Post counts on the Spring web forums since its instantiation. The y-axis shows the
number of registered users on a log scale. The x-axis shows the post count bucketed on a log
scale. As seen, there were 36,693 registered users that had not posted at all; many of these appear
to be failed spam-bots. Even so, there were over 11,000 users who made one post. Only 26 users
made over a thousand posts, and the highest post count was 10,275 posts by a single user. As
can be seen, the regression is linear on a log-log scale. The vast majority of users post very few
times. I was unable to gather this data for ASP.NET.
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1000 posts appear to be experts, and most of the users post only a handful of times. This provides
some evidence that the assumptions about forum posts are true; developers appear to be using
forums as a fallback debugging strategy rather than a primary one.

3.2 ASP.NET Forum Study

To further understand the type of questions people ask, I performed an archival analysis of the
postings in the Web Controls sub-forum of the ASP.NET help forums. At the time of the analysis
(spring of 2007), this was the most popular of the 104 sub-forums, with over 87,000 conversation
threads since 2003. My analysis was on the threads that had their last activity during the first week
of October in 2006. As the analysis itself was conducted many months later, each of these threads
can be considered closed (that is, we expect no further helpful responses).

There were 271 threads with their last activity during this period. I first removed any threads
that met one of the following properties:

• The question was not about Web Controls.

• The poster or responder used extremely poor English, to the point of not being understand-
able.

• The poster needed compilation help or otherwise did not understand basic syntax.

• The poster described the problem in such a vague way that it could not be reconstructed.

• There was no response at all or no response that solved the problem.

This left 66 threads that were on topic and were understandable enough to answer. Of these, 50
were requests for tutorials or documentation for a specific task.3 This left 16 threads for study,
which I have archived [2].

This study happened to find that all understandable threads were either requests for tutorials
and documentation or broken collaboration constraints. The case study of Spring (Chapter 6)
found many other kinds of problems, such as build errors and design questions, and other sub-
forums of ASP.NET would likely have a different breakdown of problem types. The Web Controls
sub-forum is only on the Web Controls API, so it is unsurprising that the two primary types of
questions would be of the form “How do I use the API?” and “Why didn’t my use of the API
work?”

The remaining 16 threads had several interesting characteristics.4 They were initiated by de-
velopers who had a problem in their code and were asking for help identifying the cause of the
error and how to fix it. In these threads, the original posters provided their failing code and a de-
tailed description of the failure, and a responding poster provided the fix and a description of why

3These posts would be ideally solved with design fragments [33] or similar techniques.
4I do not claim that those were the only 16, it is possible that I missed threads, that my knowledge of ASP.NET

was not sufficient to understand the problem or solution being discussed, or that people continued to respond to posts
much later (though I attempted to mitigate this issue by reading posts that were already several months old). I only
claim that there were at least 16 which had these properties. Assuming I did not miss anything in the 205 uninteresting
threads, 24% of interesting threads were on a collaboration constraint.
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Number Runtime error Runtime local? #Posters #Responders # Posts Answer time (H:MM)
1031123 Exception No 1 1 2 3:23
1031139 Exception Yes 1 1 2 0:47
1031804 Incorrect Behavior Yes 1 1 4 9:13
1032020 Exception Yes 1 0 2 24:44 (over 1 day)
1031933 Incorrect Behavior No 1 1 4 12:44
1030504 Incorrect Behavior Yes 1 3 6 162:10 (over 6 days)
1027694 Incorrect Behavior No 1 1 5 381:39 (over 15 days!)
1032187 Incorrect Behavior Yes 2 1 4 18:36
1032278 Exception Yes 1 1 3 16:18
1032624 Exception Yes 2 1 3 2:10
1032991 Exception Yes 1 2 10 7:43
1033020 Incorrect Behavior Yes 1 2 19 3:02
1033046 Incorrect Behavior Yes 1 1 3 1:46
1031946 Exception Yes 1 3 9 117:21 (over 4 days)
1033217 Incorrect Behavior No 1 2 6 3:13
1033450 Incorrect Behavior Yes 1 1 15 260:22 (over 10 days)

* URL is http://forums.asp.net/t/NUMBER.aspx
† Related threads regarding proper usage of the FindControlmethod.
‡ Related threads regarding when to dynamically create controls in the Page lifecycle.
§ Related threads regarding when to access a field in the Page lifecycle.
¶ None of the responders actually gave the correct response.
** Poster ended up “answering” own question, but actually got it slightly wrong.
†† This thread had an additional responder after I concluded the study, written on November 24, 2010. The contents were “I must

have read 10 or more post on how to do this but they were all so complicated I spent hours trying to understand one of them.
Yours was great, I figured it out in a few minutes. Thank you for simplest example possible.”

‡‡ And another one on September 21, 2010! “this is precious...i did not know that...Perfect..saved me a lot of frustration :)”

Table 3.1: Archival analysis of ASP.NET forum postings. These postings were understandable,
solvable, on topic, and were not requests for a tutorial.

the code failed. Finally, each of these 16 threads (listed in Table 3.1) described a problem where
the developer was manipulating 2-5 objects within a collaboration and had broken a collaboration
constraint.

These 16 threads show significant burden on the part of both the plugin and framework devel-
oper in several ways.

• As seen in Table 3.1, only seven of the faults resulted in a runtime exception; the remaining
nine resulted in incorrect behavior at run time, which is more difficult to debug than an
exception with a message and a stack trace.

• Four of the faults were not local to the runtime error: based on the runtime error, the plugin
developer would not be led to the method within their code that contained the fault, much
less the line of code that contained it.

• There are three groups of threads, identified in the footnotes of the table, that are actually
related issues that were posted about within the same week. It turns out that several of
the constraints can fail in different ways at run time, depending on how they were broken,
which makes it difficult for developers to search for other people who had a similar problem.
All three of these groups were related to the Page lifecycle (Vignette 2.1), and Page is the
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primary class that developers must derive from to create a plugin. There are many tutorials,
docs, and examples available on using the Page lifecycle [66, 77, 78, 100]. Unfortunately, the
class is necessarily complex in order to provide many points of variation; it has 12 different
callbacks that reusers can override.

• In two cases, a second poster appeared years later, after my initial study was finished. In
both cases, the second poster came on simply to say that they had the same problem and
that a search led them to this very helpful thread. One person noted that this saved hours
of frustration, and another had already spent many hours trying to find an answer. This
provides further evidence that developers will indeed search for a solution first and only
post when a search turns up no useful answers. There are likely more developers who found
these posts helpful and did not post in this manner.

• The average time, from original posting to answer, was over 64 hours (about 2.67 days). The
timing data is fairly skewed, as the median time was 11.25 hours. Even so, that is an entire
business day to debug the problem. Table 3.1 also shows how many posts occurred in the
thread. Some threads were fairly active even in a short period of time, while others took
a long time for very few postings. Even in the cases where there was a fast response, the
responder frequently asked for additional information to debug the problem, which is why
many threads have so many posts. Clearly, this is an inefficient way to debug a problem,
which implies that most developers will use this as a method of last resort.

This data is very similar to the data found by the Spring study (Section 6.3).
Based on this evidence, collaboration constraints appear to be burdensome for developers.

While these problems were not the largest class of questions posted on the forum, they certainly
required more time from developers in advance to investigate, and they require more time for the
experts to read, understand, and answer as experts cannot simply point developers to an online
tutorial or API. A solution that prevents the need to ask these questions would not only free up
time for the plugin developers but for the framework developers as well.
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Plugin Vignette 3.1: Drop Down List

This example is from personal experience, rather than from the ASP.NET forums. We had a web page
which had several, dynamically generated drop down lists on it. As they were dynamically generated, they
were not in the ASPX file and were declared entirely in C#. The drop down lists were also paired; selecting
an item in the first caused the second to be filtered. Selecting an item in the second caused an item in the
first to be automatically selected.

ListControl
ListItemCollection getItems()
ListItem getSelectedItem()

ListItemCollection
ListItem findByText(String)
ListItem findByValue(String)

ListBox
ListSelectionMode getSelectionMode()
void setSelectionMode(ListSelectionMode)

DropDownList
 

CheckBoxList
 

RadioButtonList
 

BulletedList
 

ListItem
boolean isSelected()
void setSelected(boolean)

*

Figure 3.3: ASP.NET ListControl Class Diagram

The ASP.NET framework provides the relevant classes and methods to change the selection of a
drop down list, as shown in Figure 3.3.5 Notice that if the developer wants to change the selection of a
DropDownList (or any other derived ListControl), she has to access the individual ListItems through the
ListItemCollection and change the selection using setSelected. Based on this information, she might
naı̈vely change the selection as shown in Listing 3.1. Her expectation is that the framework will see that
she has selected a new item and will change the selection accordingly.

Listing 3.1: Incorrect selection for a DropDownList
1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel;

6 newSel = list.getItems().findByValue("foo");

7 newSel.setSelected(true);
8 }

When the developer runs this code, she will get the exception shown in Figure 3.4. The error message
clearly describes the problem; a DropDownList had more than one item selected. This error is due to
the fact that the developer did not de-select the previously selected item, and, by design, the framework
does not do this automatically. While an experienced developer will realize that this was the problem, an
inexperienced developer might be confused because she did not select multiple items.
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Figure 3.4: Error with partial stack trace from ASP.NET

The stack trace in Figure 3.4 is even more interesting because it does not point to the code where the
developer made the selection. In fact, the entire stack trace is from framework code; there is no plugin
code referenced at all! At run time, the framework called the plugin developer’s code in Listing 3.1, this
code ran and returned to the framework, and then the framework discovered the error just before rendering
the DropDownList into HTML. To make matters worse, the program control could go back and forth several
times before finally reaching the check that triggered the exception. Since the developer doesn’t know
exactly where the problem occurred, or even what object it occurred on, she must search her code by hand
to find the erroneous selection.

The correct code for this task is in Listing 3.2. In this code snippet, the developer de-selects the currently
selected item before selecting a new item.

Listing 3.2: Correctly changing the selection
1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel, oldSel;

6 oldSel = list.getSelectedItem();

7 oldSel.setSelected(false);
8 newSel = list.getItems().findByValue("foo");

9 newSel.setSelected(true);
10 }

Now, as it turns out, I was quite familiar with this interesting aspect of the API. So, when I accidently
wrote the code in Listing 3.3, I received the expected runtime error. Oops, I got the old item but I forgot to
deselect it. Minor mistake, so I went back and edited the code to be like Listing 3.4. Notice, the only change
is the addition of line 15. I then ran it, put it through various tests, and committed. Everything worked the
way I expected.

Listing 3.3: Original bad code for manipulating selection of a DropDownList
1 private void Second_Selected(object sender, EventArgs e)
2 {

3 ListItem oldItem, newItem;

4 DropDownList firstList = ...

5 DropDownList secondList = ...

6 string newText;

7

8 oldItem = firstList.getSelectedItem();

9
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10 //some code here that worked with oldItem
11 newText = //retrieve the new
12

13 newItem = firstList.getItems().findByText("foo");

14 newItem.setSelected(true);
15 //oops, forgot to deselect
16 }

Listing 3.4: “Corrected” version
1 private void Second_Selected(object sender, EventArgs e)
2 {

3 ListItem oldItem, newItem;

4 DropDownList firstList = ...

5 DropDownList secondList = ...

6 string newText;

7

8 oldItem = firstList.getSelectedItem();

9

10 //some code here that worked with oldItem
11 newText = //retrieve the new
12

13 newItem = firstList.getItems().findByText("foo");

14 newItem.setSelected(true);
15 oldItem.setSelected(false);
16 }

A couple of days later, the tester called me over with a very strange bug in my code. It turns out, I
had missed an interesting case: if newItem happens to be the same as oldItem, then the item is selected
(which does nothing, as it is already selected), and then it is de-selected. This leaves no items selected
in the DropDownList, so the framework selects the first item in the list!6 This is an interesting issue, as it
means that ListItem.setSelected(false) must occur before ListItem.setSelected(true), and this is
not a very obvious aspect of this constraint.

There are several other ways to break this constraint in seemingly correct ways. For example, Listing
3.5 deals with two DropDownLists where the developer accidentally uses the wrong list. Another way to
break it would be to completely swap the method calls, as in Listing 3.6. Notice that the Line 8 must happen
before Line 7. Otherwise, there is more than one item selected, and the call to at Line 8 may return the new
ListItem rather than the old one, thus nullifying all of our changes!

Listing 3.5: Using two DropDownLists together and using the wrong one
1 private void Second_Selected(object sender, EventArgs e)
2 {

3 ListItem oldItem, newItem;

4 DropDownList firstList = ...

5 DropDownList secondList = ...

6 string newText;

7

8 oldItem = firstList.getSelectedItem();

9 oldItem.setSelected(false);
10 //some code here that worked with oldItem
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11 newText = //retrieve the new
12 newItem = secondList.getItems().findByText(newText);

13 newItem.setSelected(true);
14 }

Listing 3.6: Swapping the selection
1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel, oldSel;

6 newSel = list.getItems().findByValue("foo");

7 newSel.setSelected(true);
8 oldSel = list.getSelectedItem();

9 oldSel.setSelected(false);
10 }

There is another interesting aspects of this constraint in that the other sub-types of ListControl do not
necessarily have this constraint. RadioButtonList has a similar constraint, but CheckBoxList can have as
many or as few items selected as it likes. A ListBox is also interesting, as there is an setting to determine
whether it will function as a single-select list or a multi-select list. Of course, the methods involved in the
selection constraint are not in any of these subtypes, but in ListControl and ListItem.

Notice that this means that a DropDownList is not substitutable anywhere a ListControl is used! It has
added an additional constraint which the parent did not have, and so it has broken behavioral subtyping.
While unfortunate, this is not an uncommon problem in frameworks. The framework developers here have
traded off usability of the external API for code reuse within the framework. They may have made the right
choice (who would ever substitute a DropDownList for a multi-select ListBox?), but it has some unfortunate
usability consequences.

3.3 Properties of Collaboration Constraints

This section addresses both Contribution 1d and 2b. Using the 16 threads in Table 3.2 as examples,
I sought to understand the properties of collaboration constraints that make them difficult to spec-
ify using existing techniques such as typestate [15], pluggable typesystems [7], JML [69], or SCL
[55]. I found four properties, as listed in Table 3.2. This is an open and non-identifying list, that is,
these properties do not uniquely identify collaboration constraints. However, they are common
enough in collaboration constraints that it is important to be aware of them, and they each add to
the complexity of these constraints. In this section, I will also refer to Vignettes 2.1, 2.2, and 3.1 as
examples of the properties.

5To make this code more accessible to those unfamiliar with C#, we are using traditional getter/setter syntax rather
than properties.

6Clearly, I had a very good tester, as this problem only manifests when oldItem equals newItem and they are not the
first item in the list.
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Problem Property 1. Collaboration constraints involve multiple types and objects.

All of the problems described in the threads were examples of broken collaborations among
several objects. Typically 2-5 objects were relevant for the collaboration, and two to five classes
were also used (including relevant base classes). In Vignette 3.1, Listing 3.2 required four objects to
make the proper selection. The framework code used by the DropDownList example was located
in four classes (DropDownList, ListControl, ListItemCollection, and ListItem). In Vignette
2.2, the correct plugin also referenced four objects: the Request object, the LoginView control, the
DropDownList control, and the Page in which all this code was running and which owned the
Request and the LoginView.

Problem Property 2. Collaboration constraints are often extrinsic to a type.

Thirteen of the examples in Table 3.2 are extrinisic constraints, that is, the constraint is defined
or checked outside of the type that is being constrained. By contrast, an intrinsic constraint is
one that limits the class it is defined by; class invariants and single-object protocols are exam-
ples of intrinsic constraints. Vignette 3.1 provided an example of an extrinsic constraint. While
the DropDownList was the class that checked the constraint (as seen by the stack trace), the con-
straint itself was on the methods of ListItem. However, the ListItem class is not aware of the
DropDownList class or even that it is within a ListControl at all, and therefore it should not be re-
sponsible for enforcing the constraint. Likewise, in Vignette 2.1, the ability to call certain methods
on a Control is limited based on what callback the Page is currently in, and not on any property
of the Control itself.

Problem Property 3. Collaboration constraints involve semantic properties such as object identity, prim-
itive values, state, and ordering of operations.

All of the examples in Table 3.2 required that the plugin developer be aware of the framework’s
program semantics in a way that goes beyond what is verifiable with traditional typesystems or
structural checkers. In particular:

• Object identity matters. Nine constraints required developers to be aware not only of the type
of the object, but the unique identity of the object. In Vignette 3.1, the plugin developer had
to be aware of which ListItem she was using to avoid the problem in Listing 3.5. Likewise,
in Vignette 2.2, the plugin developer had to use the Request object which was associated
with the Page that the LoginViewwas on. Not just any Request object would do.

• Temporal requirements matter. Four of the constraints had temporal requirements about the
ordering of operations. As seen in Vignette 3.1, Listing 3.6, swapping two otherwise valid
method calls can impact the collaboration in unexpected ways.

• Primitive values matter. Seven constraints referenced primitive values such as booleans and
strings, and in some cases, the value directed control flow in the form of a dynamic state test.
One example of this can be seen in Vignette 2.2, Listing 2.4, where it was not only important
that the call be made to Request.isAuthenticated(), but that this call return true.
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Protocol Number #Classes, #Objects Extrinsic v. Intrinsic Semantics Artifact Types

1

1030504 4, 4 Extrinsic Callback C#
1027694 3, 2 Extrinsic Callback ASPX, C#
1032187 3, 3 Extrinsic Callback ASCX, VB.NET
1033046 2, 2 Extrinsic Callback C#

2

1032991 2, 2 Extrinsic Identity, Callback C#
1033030 2, 2 Extrinsic Value, Callback VB.NET
1031946 2, 2 Extrinsic Callback ASPX, C#
1033217 2, 2 Extrinsic Value, Callback VB.NET

3
1031139 4, 4 Extrinsic Identity, Value ASPX, VB.NET
1032020 3, 3 Intrinsic Identity, Value ASPX, VB.NET
1032624 4, 4 Intrinsic Identity, Value ASPX, C#

4 1031123 3, 3 Intrinsic Temporal, Identity ASPX, VB.NET
5 1031804 3, 2 Extrinsic Value, Temporal, Identity C#
6 1031933 5, 5 Extrinsic Callback, Identity C#
7 1032278 4, 4 Extrinsic Temporal, Identity VB.NET
8 1033450 2, 2 Extrinsic Value, Temporal, Identity ASPX, VB.NET

Table 3.2: Properties of the underlying collaboration constraint.

• Callbacks matter. Nine of the constraints were regarding a callback and specifically allowed or
disallowed particular operations only within a particular method of the this object. Vignette
2.1 was entirely regarding a callback situation where certain operations were not allowed
within certain contexts.

Every problem examined had at least one of these semantic issues, and 11 of them had at least two
of these properties.

Problem Property 4. Collaboration constraints span many kinds of files and data, including declarative
artifacts.

The examples studied spanned many different kinds of program artifacts, not just traditional
program code. In particular, half of the studied examples were using a declarative artifact (ei-
ther ASPX or ASCX) that was relevant to the constraint. Vignette 2.2 shows how a collaboration
constraint extends into ASPX. In this example, the ASPX file affected how the programmer could
reference and use the objects in the C# code-behind file. The code-behind file also had to use the
same strings as the ASPX file for the desired behavior to take place. Vignette 2.1 contains an-
other interesting interaction between these files. The field DateYearwas not available because the
framework uses dependency injection to automatically set this field for the plugin. Had the plugin
set this field itself, the constraint no longer applies. Whether or not the framework performs the
dependency injection in the code-behind file is based on what controls are declared in the ASPX
file.

There do exist systems that specify constraints with some of these properties, but there are
no known systems that can handle all of them. There are several techniques that can specify and
verify constraints on multiple objects with semantic properties. Recent work has shown that ses-
sion types [54], tracematches [82], and typestates [15, 67, 83] can all handle multi-object, semantic
constraints. In fact, these three techniques and the system presented in this dissertation are all
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interconnected, and much of the work in this thesis could, in theory, apply to these techniques as
well. Chapter 8 provides a more detailed comparison.

Most specification languages specify intrinsic invariants, rather than extrinsic invariants. Two
notable exceptions are tracematches [122] and SCL [55]. As neither of these systems are a type-
system, they do not need to specify the constraint within the context of a particular type. This
provides them with more flexibility of the kind of specifications they can describe, and the system
presented in this dissertation uses a similar technique.

Unfortunately, there is no work that can generically specify across language boundaries and
analyze declarative artifacts. The only known work in this area is [6], which analyzes Ruby code
alongside Rails configuration files. It does so be effectively interpreting the Rails configuration
files into Ruby based upon its knowledge of how Rails configurations work. Of course, this system
is specific to the Ruby on Rails framework and does not generalize to other frameworks.

This dissertation contributes a system that can specify and statically verify constraints with all
four of the properties listed above and do so in a cost-effective manner.
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Chapter 4
Relationship Specifications

Chapter 3 describes a collaboration constraint informally as a constraint on how several objects
may interact in a protocol, and it used an archival analysis of the ASP.NET help forums to under-
stand the properties of these constraints. Recall that a collaboration constraint is a pre-condition
to an operation, and this pre-condition is expressed as a predicate on the abstract states of several
objects.

For example, there were two collaboration constraints in the problem in Vignette 3.1. The first
was a pre-condition on calls to ListItem.setSelected(boolean) which said that when the op-
eration is called on a ListItem that is a member of a DropDownList and the parameter is true,
then the DropDownList must be in an unselected state. The second constraint, on the same oper-
ation, governed the case where the parameter is false and required that the ListItem be in the
selected state. Notice that by combining several collaboration constraints together, a developer
can describe a protocol for using multiple objects based on their abstract states. These states are
abstract because they did not refer to a concrete memory representation of these two objects, and
they did not describe how we know that the ListItem is connected to a DropDownList in memory.
An abstract state is a state with developer-defined semantics that may not have any particular
instantiation of values or pointers into the heap.

The goal of this work is to provide a cost-effective specification and analysis technique for
collaboration constraints that can handle all the properties described in Chapter 3. To achieve this,
I use abstract relationships among objects, defined below, as the primary abstraction for specifying
and analyzing these constraints.

Definition 7 (Relationship). A relationship is a user-defined, abstract state-based tuple on several ob-
jects.

A relationship is a developer-defined abstraction that describes how several objects are associ-
ated at a design level. For example, we can talk about the relationships between a data structure
and each item within that data structure. The actual code level association between two such
objects may go through several other objects in the heap; a linked list, for example, might be asso-
ciated with its tail-most object only through the pointers that go through every other object in the
list. However, we as programmers still talk about this association between the tail item and the list

35
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as though it is directly embedded in the code. A relationship is therefore a form of design intent
and represents an abstract connection among several objects at runtime. This abstract connection
need not map to a concrete connection in the heap. It is formally defined as a programmer-named
predicate across runtime objects `.

Relationship = Name(`1, . . . , `n)

In Vignette 3.1, there was an association between the DropDownList and each of the ListItems.
This could be encoded as two relationships: Child(oldItem, ctrl) and Child(newItem, ctrl). The
shared name symbolizes a shared semantic meaning, though this meaning is given by the devel-
oper and not the specification itself.

Relationships are not a new abstraction in programming languages. Prior work has promoted
relationships to a first-class abstraction and allows developers to program by explicitly adding
and removing relationships between objects [16]. This work differs by allowing relationships to be
implicit design abstractions, rather than being explicitly modeled in the programming language
or the runtime. However, while the relationships of Fusion are not be modeled at runtime, the
concept of a relationship remains the same.

As relationships are abstract and programmer defined, they can be thought of as an unin-
terpreted predicate. The static analysis described later has no notion of the tacit meaning of a
relationship and no way to check that it actually holds in code. In particular, relationships can
represent ownership of objects (like Child(oldItem, ctrl)), but they are not interpreted as such and
can hold whatever meaning the developer imposes on them.

While the relationship abstraction is not specific to a particular programming language1, the
specification language Fusion (Framework Usage SpecificatIONs) is implemented for Java and
XML. To use the Child relationships above, we must first define the relation that describes the type
of the relationship. In Fusion, this is be done with Java annotations; Listing 4.1 defines the Child
relation. All relations are a Java annotation and are identified with the @Relation annotation that
defines the types of the objects in the relationships. Additionally, all relations must have the three
properties shown. The rest of this chapter assumes that all relationships used have a relation
defined in a similar manner.

This chapter uses collaboration constraints from Vignettes 3.1 and 2.1 as concrete examples
of how to specify and analyze collaboration constraints in Fusion. This chapter makes Contri-
bution 2a by showing how Fusion can specify collaboration constraints by joining relationships
with logical connectives to create pre-conditions on framework operations. Section 4.4 details
how specification language can both handle the properties of collaboration constraints identified
in Section 3.3 (Contribution 2c), and it describes several properties of the specification language
that are necessary for a practical specification language (Contribution 6.5). Section 4.2 describes
an associated static analysis that can detect invalid plugins that do not meet these specifications

1This dissertation does assume an imperative, object-oriented language. However, the work is shown to extend to
declarative object-oriented languages, such as XML. Additionally, the “object” ` used in a relationship need not be an
object as defined by the OO paradigm; I hypothesize that many possible data abstractions could work here. One could
imagine similar kinds of constraints on usage of abstract data types. The only languages that would seem to not be
relevant for this work would be those that have no potential for state.
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Listing 4.1: The definition of the Child relation. Every relation must define params, effect, and
test

1 @Relation({ListItem.class, ListControl.class})
2 public @interface Child {
3 String[] params();

4 Effect effect();

5 String test() default "";
6 }

(Contribution 3a).2 Additionally, this section describes three variants of the analysis: a sound
variant, a complete variant, and a pragmatic variant (Contribution 3c).

4.1 Specifying constraints in Fusion

Fusion uses relationships to define pre- and post-conditions of framework operations.3 A post-
condition is described by relationship effects, and a pre-condition is described by a requires predicate.
Unlike other pre- and post-condition specification systems, Fusion allows specifications to be writ-
ten on many kinds of framework operations, not just method calls. The implementation currently
supports method calls, constructor calls, the beginning of a method, and the end of a method.
Theoretically, it can also support operations like field reads, field writes, and synchronizing on an
object, though those operations are not implemented currently in Fusion. For purposes of describ-
ing the specifications, this section primarily uses method calls as the operation being specified.

Relationship effects are a type of post-condition that specifies what was previously the tacit
knowledge of the plugin after calling a framework method. Consider a framework developer
who is specifying a typical List interface where objects in the list are expected to be in an Item
relationship with the list. The framework developer can specify that the method List.add(Object
item) has the effect of creating an Item relationship between the item and the list (also known as
the target object). Similarly, calling List.remove(Object item) removes the Item relationship
between the item and the target object. The plugin can even test the state of this relationship
by calling List.contains(Object item) to determine whether there exists an Item relationship
between these objects.

Once the developer has defined a relationship type in Fusion, she can annotate methods to
show relationship effects. Listing 4.2 shows the relationship effects for the simple List example.4

The detailed syntax will be discussed later, for now it is only important to understand that each
annotation represents the ability to add or remove a relationship. To add or remove a relationship,
the developer specifies the objects within the relationship (the value parameter in Listing 4.1)

2Descriptions of how the analyses is affected by aliasing and how it works in the presence of declarative artifacts is
discussed separately in Chapter 5.

3The definition of a collaboration constraint describes it only as pre-condition. However, the ability to specify post-
conditions is necessary in order to set up the predicates that are used in the preconditions.

4The syntax shown is not technically correct Java annotation syntax, but is shown this way for readability purposes.
The correct syntax for @Item({item, target}, TEST, result) is actually @Item(value={”item”, ”target”}, effect=TEST,
test=”result”)
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Listing 4.2: Relationship effects on List
1 public interface List {
2 @Item({item, target}, ADD)
3 public void add(Object item);
4

5 @Item({item, target}, REMOVE)
6 public void remove(Object item);
7

8 @Item({item, target}, TEST, result)
9 public boolean contains(Object item);

10

11 @Item({∗, target}, REMOVE)
12 public void clear();
13 }

and the effect desired (the effect parameter in Listing 4.1). To test the state of a relationship,
the developer uses the TEST effect and provides a value for the third parameter. This must be a
boolean value which is true if the effect is added and false if it is removed.

Notice that a relationship effect only describes what is learned as a result of calling the method
and does not necessarily reflect a change in the heap. For example, List.contains in Listing
4.2 is specified as either adding or removing an Item relationship, but the method of course
is only a lookup and doesn’t change the heap. The relationship, in some sense, already ex-
isted; the specification just provided us with belated information about it. In a similar man-
ner, ListControl.getSelectedItem in Listing 4.3 is specified as adding two relationships, but
of course, the getter does not change the heap. This reemphasizes that relationships are merely a
developer abstraction about design intent; they have no direct correspondence to the code being
specified. This gives relationships a lot of power to verify plugins but not to verify frameworks.

Relationship effects may refer to any variables used by the specified operation. In the case of
method calls, relationships can refer to the parameters, the target of the method call or field access
(designated with the name target), and the returned object (designated with result). Relationship
effects may also refer to types and primitive values. Finally, parameters can be wild-carded, so
Item({*, list}, REMOVE) removes all the Item relationships between list and any other object; this is
especially useful to place on methods such as List.clear(), as shown in Listing 4.2. An example
of these relationship effects on the ListControl API can be found in Listing 4.3; this API uses all
three of the effects described and uses wildcards.

A pre-condition in Fusion is called a requires predicate; this is a logical predicate on rela-
tionships. The logical operators and, or, and implies are all allowed in a requires predicate, and
relationships may be tested for falsehood using not (!).5 This allows the framework developer to
write constraints such as “the item to deselect must already be selected and must be a member of
the same drop down list as the item to be selected”:

Selected(oldItem) ∧ Child(oldItem, ctrl) ∧ Child(newItem, ctrl)
5These operators have the expected semantics, though Section 6.4.3 describes an interesting side effect of the location

of negation in the constraint.
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Listing 4.3: Partial ListControl API with relationship effect annotations
1 public class ListControl {
2 @List({result, target}, ADD)
3 public ListItemCollection getItems();
4

5 //After this call we know two pieces of information. The returned item is selected and it is a child of this
6 @Child({result, target}, ADD)
7 @Selected({result}, ADD)
8 public ListItem getSelectedItem();
9 }

10 public class ListItem {
11 //If the return is true, then we know we have a selected item. If it is false, we know it was not selected.
12 @Selected({target}, TEST, return)
13 public boolean isSelected();
14

15 @Selected({target}, TEST, select)
16 public void setSelected(boolean select);
17

18 @Text({result, target}, ADD)
19 public String getText();
20

21 //When we call setText, remove any previous Text relationships, then add one for text
22 @Text({∗, target}, REMOVE)
23 @Text({text, target}, ADD)
24 public void setText(String text);
25 }

26 public class ListItemCollection {
27 @Item({item, target}, REMOVE)
28 public void remove(ListItem item);
29

30 @Item({item, target}, ADD)
31 public void add(ListItem item);
32

33 @Item({item, target}, TEST, result)
34 public boolean contains(ListItem item);
35

36 @Item({result, target}, ADD)
37 @Text({text, result}, ADD)
38 public ListItem findByText(String text);
39

40 //if we had any items before this, remove them after this call
41 @Item({∗, target}, REMOVE)
42 public void clear();
43 }
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With just relationship effects and requires predicates, a framework developer could make sim-
ple pre- and post-conditions on operators. However, as Property 3 describes, collaboration con-
straints have separate properties that are not capturable through this alone. Consider: how can
we specify ListItem.setSelected(boolean) such that:

• We only deselect a ListItem that is currently selected.

• We only select a ListItem after deselecting.

• These operations are only allowed when the ListItems are members of the same List-
Control.

• These operations are only constrained when the ListControl is a DropDownList or other
single-select control.

To address this, Fusion provides a new kind of specification called a trigger predicate. While
this predicate looks similar to the requires predicate, its meaning is very different. The trigger
predicate determines when the constraint applies; it is more similar to the signature of the operator
being constrained. While an operation’s signature can describe the syntax of when a constraint
should apply (ie: this is a constraint on ListItem.setSelected(boolean)), a trigger can describe
the semantics of when a constraint should apply (ie: only when the ListItem is a member of a
DropDownList and when the boolean parameter is false).

In Fusion, we can use trigger predicates with requires predicates and relationship effects to
specify a constraint on an operation. This is done using a Java annotation with four parts.

1. operation: This is a signature of an operation to be constrained, such as a method call, con-
structor call, or even a tag signaling the end of a method. Notice that these constraints may
be defined in another class. This makes constraints more expressive than a class or protocol
invariant as they can be extrinsic.

2. trigger predicate: This is a logical predicate over relationships. This predicate must be true
for the constraint to be triggered. If not, the constraint is ignored. While operation provides a
syntactic trigger for the constraint, trigger provides the semantic trigger. The combination of
both a syntactic and semantic trigger allows constraints to be more flexible and expressible
than many existing protocol-based solutions.

3. requires predicate: This is another logical predicate over relationships. If the constraint is
triggered, then this predicate must be true. If the requires predicate is not true, this is a
broken constraint and the analysis should signal an error in the plugin.

4. effect list: This is a list of relationship effects. If the constraint is triggered, these effects
are applied in the same way as the relationship effects described earlier. They are applied
regardless of the state of the requires predicate.

Listing 4.4 provides the three Fusion constraint specifications needed to completely describe
the collaboration constraint of Vignette 3.1, including a specification for each mode of ListItem.-
setSelected(boolean). The first constraint is checking that at every call to ListItem.setSelect-
ed(boolean), if the the argument is false, the receiver is a Child of a ListControl, and if that
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Listing 4.4: DropDownList Selection Constraints. These constraints use user-defined relations
Selected, CorrectlySelected, and Child. They also use the two special relations with pre-defined
semantics, the equality relation (==) and the type relation(instanceof), which are described in
Section 4.3.

1 @Constraint(
2 op=‘‘ListItem.setSelected(boolean select)’’,
3 trigger=‘‘select == false and Child(target, ctrl) and ctrl instanceof DropDownList’’,
4 requires=‘‘Selected(target)’’,
5 effect={‘‘!CorrectlySelected(ctrl)’’})
6 @Constraint(
7 op=‘‘ListItem.setSelected(boolean select)’’,
8 trigger=‘‘select == true and Child(target, ctrl) and ctrl instanceof DropDownList’’,
9 requires=‘‘!CorrectlySelected(ctrl)”,

10 effect={‘‘CorrectlySelected(ctrl)’’})
11 @Constraint(
12 op=‘‘end−of−method”,
13 trigger=‘‘ctrl instanceof DropDownList’’,
14 requires=‘‘CorrectlySelected(ctrl)’’,
15 effect={})
16 public class DropDownList {...}

ListControl is a DropDownList, then it must also indicate that the ListItem is Selected. Addi-
tionally, the relationships change so that the DropDownList is not CorrectlySelected. The second
constraint is similar to the first and it enforces proper selection of ListItems in a DropDownList.
The third constraint ensures that the plugin method does not end in an improper state by utilizing
the “end-of-method” instruction to trigger when a method is about to end. This ensures that all
DropDownLists are left in a state where only one item is selected.

4.2 Analyzing Programs

One of the primary benefits of formal specifications is using them to statically verify programs.
Fusion provides a static analysis to track relationships through plugin code and check plugin
code against framework constraints. The Fusion analysis is a modular, branch-sensitive, forward
dataflow analysis6. It is designed to work on a three address code representation of Java-like
source. The analysis runs in the Crystal static analysis framework, which provides all of these fea-
tures. In this section, I present the analysis data structures, the intuition behind the three variants
of the analysis, and examples of how it works on the example in Vignette 3.1.

The Fusion analysis requires that it be provided with a points-to analysis that implements a
simple interface. First, it assumes there is a context L that given any variable x, provides a finite
set ¯̀ of abstract locations that the variable might point to. Second, it assumes a finite context Γ`
which maps every location ` to a type τ. The combination of these two contexts, < Γ`,L > is

6By branch-sensitive, we mean that the true and false branches of a conditional may receive different lattice infor-
mation depending upon the condition. This is not a path-sensitive analysis.



42 CHAPTER 4. RELATIONSHIP SPECIFICATIONS

represented as the alias lattice A. This lattice must conservatively abstract the heap, as defined by
Definition 8.

Definition 8 (Abstraction of Alias Lattice). Assume that a heap h is defined as a set of source variables
x which each point to a runtime location ` of type τ. Let H be all the possible heaps at a particular program
point. An alias lattice < Γ`,L > abstracts H at a program counter if and only if

∀ h ∈ H . dom(h) = dom(L) and
∀ (x1 ↪→ `1 : τ1) ∈ h . ∀ (x2 ↪→ `2 : τ2) ∈ h .

(if x1 6= x2 and `1 = `2 then
∃ ` ′ . ` ′ ∈ L(x1) and ` ′ ∈ L(x2) and τ1 <: Γ`(`

′)) and
(if x1 6= x2 and `1 6= `2 then
∃ ` ′1, ` ′2 . ` ′1 ∈ L(x1) and ` ′2 ∈ L(x2) and ` ′1 6= ` ′2 and τ1 <: Γ`(`

′
1) and τ2 <: Γ`(`

′
2))

This definition ensures that if two variables alias under any heap, then the alias lattice reflects that
by putting the same location ` ′ into each of their location lists. Likewise, if the two variables are
not aliased within a given heap, then the alias lattice reflects this possibility as well by having a
distinct location in each location set. The definition also ensures that the typing context Γ` has the
most general type for a location.

More details on how Fusion uses a given points-to analysis can be found in Chapter 5; for now
it is enough to know that it must meet the requirement above.

4.2.1 The Relation Lattice

Unknown

True

ooooo
False

PPPPP

⊥
nnnnnnn

PPPPPPP

Figure 4.1: The rela-
tionship state lattice.

The status of a relationship is tracked using the four-point dataflow
lattice represented in Figure 4.1, where Unknown represents either
True or False and the bottom of the lattice, ⊥ is a special case used
only inside the flow function. The Fusion analysis uses a tuple lat-
tice that maps all relationships we want to track to a relationship
state lattice element, represented as ρ. We say that ρ is consistent
with an alias lattice A when the domain of ρ is equal to the set of
relationships that are possible under A.

Notice that as more references enter the context, there are more
possible relationships, and the height of ρ grows. Even so, the height is always finite as there
is a finite number of locations ` and a finite number of relationships. As the flow function is
monotonic, the analysis always reaches a fix-point.

Since the relationships are tracked with three possible states, True, False, or Unknown, a re-
lationship predicate like the trigger and requires predicates must be evaluated with three-value
logic. The formal rules used to evaluate a relationship predicate under a given lattice is shown
in Appendix B (Figures B.19, B.21, and B.22), but it follows the expected pattern of a three-value
logic.
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Listing 4.5: Walk-through showing how the lattice ρ changes as the analysis flows through the
program.

1 DropDownList ddl = ...;

2 ListItemCollection coll;

3 ListItem newSel, oldSel;

4 //−
5 oldSel = ddl.getSelectedItem();

6 //Child(l2, l1), Selected(l2)
7 oldSel.setSelected(false);
8 //Child(l2, l1), !Selected(l2)
9 coll = ddl.getItems();

10 //Child(l2, l1), !Selected(l2), List(l3, l1)
11 newSel = coll.findByText("foo");

12 //Child(l2, l1), !Selected(l2), List(l3, l1), Item(l4, l3), Text(”foo”, l4)

4.2.2 The flow function

The analysis flow function is responsible for two tasks; it must check that a given operation is
valid, and it must apply any specified relationship effects to the lattice. The flow function is
defined as

fC(A, ρ, instr) = ρ ′

where C is all the constraints, A is the alias lattice, ρ is the starting relationship lattice, ρ ′ is
the ending relation lattice, and instr is the instruction the analysis is currently checking. The
analysis goes through each constraint in C and checks for a match. It first checks to see whether the
operation defined by the constraint matches the instruction, thus representing a syntactic match.
It also checks to see whether ρ determines that the trigger of the constraint applies. If so, it has
both a syntactic and semantic match, and it binds the specification variables to the locations that
triggered the match. These bindings are used for the remaining steps.

Once the analysis has a match, two things must occur. First, it uses the bindings generated
above to show that the requires predicate of the constraint is true under ρ. If it is not true, then the
analysis reports an error on instr. Second, the analysis must use the same bindings to produce ρ ′

by applying the relationship effects. If the analysis reports an error, then the flow function above
terminates with no result.

As an example for how this works, consider the code snippet in Listing 4.5. In this listing, the
comments show the lattice ρ. At line 7, the starting lattice ρ is:

Child(`2, `1) 7→ True
Selected(`2) 7→ True

All relationships that are not explicitly shown are assumed to be Unknown. The points-to lattice A

is not shown in the listing, but for purposes of this example it might be given as:

Γ` = {`1 : DropDownList, `2 : ListItem}

L = {oldSel = {`1}, ddl = {`2}}
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The analysis then checks every constraint to see if there is a matching operator and a matching
trigger. It might eventually find the two constraints below:

1 @Constraint(
2 op=‘‘ListItem.setSelected(boolean select)’’,
3 trigger=‘‘select == false and Child(target, ctrl) and ctrl instanceof DropDownList’’,
4 requires=‘‘Selected(target)’’,
5 effect={‘‘!CorrectlySelected(ctrl)’’})
6 @Constraint(
7 op=‘‘ListItem.setSelected(boolean select)’’,
8 trigger=‘‘select == false’’,
9 requires=‘‘TRUE’’,

10 effect={‘‘!Selected(target)’’})

Therefore, as the operator matches and the trigger evaluates to True for both of these constraints,
the analysis produces the output lattice ρ ′, which will be used as the input for the next line. When
more than one constraint applies, the resulting effects are merged together to produce a single ρ ′:

Child(`2, `1) 7→ True
Selected(`2) 7→ False

CorrectlySelected(`1) 7→ False

The analysis is conservative in this merge but attempts to save as much precision as possible;
Appendix B describes it in further detail. Any constraints where the operator does not match,
or where the trigger evaluates to False, are ignored and their effects are not applied. In cases
where the trigger evaluates to Unknown, all the relationships in the effects list are set to Unknown
in order to be conservative. Again, the analysis does actually try to save some precision using
further tricks, such as comparing to the old state, as explained in Appendix B.

4.2.3 Soundness and completeness

The properties of soundness and completeness each provide an interesting guarantee to the user
of an analysis. A sound analysis can guarantee that there are no errors at run time if the analysis
finds no errors, and a complete analysis can guarantee that any errors the analysis finds will actu-
ally occur in some run time scenario For the purposes of these definitions, an error is a dynamic
interpretation of the constraint that causes the requires predicate to fail. In the formal semantics,
an error is signaled as a failure for the flow function to generate a new lattice for a particular
instruction.

I have defined a theorem of soundness, and also a theorem of completeness, for the Fusion
analysis. While no analysis can be both sound and complete, the Fusion analysis has two variants,
with slightly different semantics, which achieve each of these properties separately. I define both
of these theorems by assuming the existence of a points-to analysis that abstracts the heap using
A, as described above. For both of these theorems, let Aconc define the actual heap at some point of
a real execution, and let Aabs be a sound approximation of Aconc by Definition 8. Additionally, let
ρabs and ρconc be relationship lattices consistent with Aabs and Aconc where ρabs is an abstraction
of the concrete runtime lattice ρconc, defined as ρconc v ρabs.
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For the sound variant, we expect that if the flow function generates a new lattice using the
imprecise lattice ρabs, then any more concrete lattice also produces a new lattice for that instruc-
tion. As the flow function only generates a new lattice if it finds no errors, then there may be false
positives from when ρabs produces errors, but there are no false negatives. To be locally sound
for this instruction, the new abstract lattice must conservatively approximate any new concrete
lattice. Theorem 3 captures the intuition of local soundness formally.

Theorem 1 (Local Soundness of Relations Analysis).
if fC;Aabs(ρ

abs, instr) = ρabs
′
and ρconc v ρabs

then fC;Aconc(ρ
conc, instr) = ρconc

′
and ρconc

′ v ρabs ′

If the Fusion analysis is complete, we expect a theorem which is the opposite of the soundness
theorem and is shown in Theorem 2. If a flow function generates a new lattice given a lattice ρconc,
then it also generates a new lattice on any abstraction of ρconc. An analysis with this property may
produce false negatives, as the analysis can find an error using the concrete lattice yet generate a
new lattice using ρabs, but it produces no false positives. Like the sound analysis, the resulting
lattices must maintain their existing precision relationship.

Theorem 2 (Local Completeness of Relations Analysis).
if fC;Aconc(ρ

conc, instr) = ρconc
′
and ρconc v ρabs

then fC;Aabs(ρ
abs, instr) = ρabs

′
and ρconc

′ v ρabs ′

For this work, I have implemented both a sound variant and a complete variant of the Fusion
analysis. Additionally, I have created a third variant, known as the pragmatic variant, which at-
tempts to balance the tradeoffs between soundness and completeness. This variant is unique in
the research literature, but it could be created for other analyses with similar properties to Fusion.
In particular, any system that has separate concepts of a trigger predicate and a requires predicate
can support a pragmatic variant.

The formal semantics for the three variants can be found in Appendix B, and the proofs of the
two theorems above, for the appropriate variants, can be found in Appendix C. Global soundness
and global completeness directly follow from local soundness and local completeness due to the
monotonicity of the flow function and the initial conditions of the lattice. Appendix C contains
further discussion on how these global properties hold and why the analysis is monotonic; further
reading on the theoretical properties of monotonic dataflow analyses can be found in [84].

The primary difference in the three variants is how they handle unknownness from the trigger
and requires predicates. As stated before, the relationship lattice uses Unknown, in addition to True
and False, which results in predicates that are evaluated as three-value logic. How the variants
deal with Unknown in each of these predicates is defined in Table 4.1 and is described below.

Trigger condition. The trigger predicate determines when the constraint will check the re-
quires predicate and when it will produce effects. The sound variant must trigger a constraint
whenever there is even a possibility of it triggering at run time. Therefore, it triggers when the
predicate is either True or Unknown. The complete variant can produce no false positives, so it
only checks the requires predicate when the trigger predicate is definitely True. Regardless of the
variant, if the trigger is either True or Unknown, the analysis produces a set of changes to make
to the lattice based upon the effects list. The pragmatic variant works the same as the complete
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Table 4.1: Predicate checking differences between sound, complete, and pragmatic variants.

Variant Trigger Predicate checks when... Requires Predicate passes when...
Sound True or Unknown True
Complete True True or Unknown
Pragmatic True True

Table 4.2: Results from running each variant on the examples from Vignette 3.1.

Listing reference Line number
of fault

Sound
results

Pragmatic
results

Complete
results

3.1: Naı̈ve selection 7 7 7 -
3.2: Correct selection - 9,9 - -
3.3: Forgotten deselection 14 14, 14 14 -
3.4: Nothing selected 14 14 14 14
3.5: Two lists, incorrect 13 13, 13 13 -
(Not given): Two lists, correct - 13, 13 - -
3.6: Swapped selection 7,9 7, 9, 9 7, 9 9

variant when determining whether to trigger the constraint. The rationale here is to try to reduce
the number of false positives by only checking constraints when they are known to be applicable.

Error condition. The requires predicate should be true to signal that the operation is safe to
use. The sound variant must cause an error whenever the requires predicate is False or Unknown.
The complete variant, however, can only cause an error if it is sure there is one, so it only flags
an error if the requires predicate is definitely False. In this case, the pragmatic variant works the
same as the sound variant. If the analysis has come to this point, it already has enough information
to determine that the trigger was true. Therefore, the pragmatic variant requires that the plugin
definitely show that the requires predicate is True, with the expectation that this will reduce the
false negatives.

While the pragmatic variant can produce false positives and false negatives, it provides an
interesting point in the space. It takes advantage of the heuristic that if there is enough precision
to tell whether the trigger predicate is True or False, then there ought to be enough precision to
tell this for the requires predicate as well. Any other specification system that provides a separate
concept for a trigger predicate can also create a pragmatic variant.

We shall now explore how the three variants compare on the examples from Vignette 3.1. Table
4.2 summarizes each of the snippets from Vignette 3.1, where the fault in the snippet is, and the
results from the three variants of the analysis when using the specifications from Listing 4.3 and
Listing 4.4.

Notice that the results produced by the variants have a subset relationship. This is always the
case; as seen in Figure 4.2, the variants are defined in such a way that the pragmatic variant always
contains the results of the complete variant, and it attempts to take the parts of the complete
variant that are heuristically more likely to be true positives than false positives.

Listing 4.6 and 4.7 show the snippet from the first two rows of Table 4.2 with the relationship
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Sound Warnings

True/True Pragmatic Warnings

True/Unknown Complete Warnings

True/False

Unknown/Unknown Unknown/False

Unknown/True

False/False

False/Unknown

False/True

All possible Trigger/Requires combinations

Figure 4.2: Venn diagram of warnings reported by each variant.

Listing 4.6: Incorrectly changing the selection, with ρ in comments.
1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel;

6 //−
7 newSel = list.getItems().findByValue("foo");

8 //Child(newSel, list), Value(”foo”, newSel)
9 newSel.setSelected(true);

10 //Child(newSel, list), Value(”foo”, newSel), Selected(newSel)
11 }

lattice described in comments. For simplicity of the examples, the alias lattice is not shown and
all variables are assumed to be unique in the example. Notice that for all variants, the relationship
lattice is the same. This is because all three variants must be conservative when producing the
relationship effects. Excluding the complexities with aliasing that seen in Chapter 5, the only
difference between the variants are the condition that lead to an error. As presented so far, the
dataflow analysis works identically.

At line 9 in Listing 4.6, both the first and second constraints’ operators match the instruction
signature. However, the first constraint’s trigger predicate evaluates to False, so it will be ignored
as though the operator didn’t match. The second constraint’s trigger predicate evaluates to True,
so all the variants evaluate the requires predicate. As this predicate evaluates to Unknown, both
the sound and pragmatic variants produce an error at line 9. On the other hand, the complete
variant does not have enough precision to discover the error.

Let’s now consider the code in Listing 4.7. When Fusion analyzes line 9, it again tries both the
first and second constraints in Listing 4.4. However, this time the first constraint’s trigger predicate
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Listing 4.7: Correctly changing the selection, with ρ in comments.
1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel, oldSel;

6 //−
7 oldSel = list.getSelectedItem();

8 //Child(oldSel, list), Selected(oldSel)
9 oldSel.setSelected(false);

10 //Child(oldSel, list), !Selected(oldSel), !CorrectlySelected(list)
11 newSel = list.getItems().findByValue("foo");

12 //Child(oldSel, list), !Selected(oldSel), !CorrectlySelected(list), Child(newSel, list), Value(”foo”, newSel)
13 newSel.setSelected(true);
14 //Child(oldSel, list), !Selected(oldSel), CorrectlySelected(list), Child(newSel, list), Value(”foo”, newSel), Selected(newSel)
15 }

Listing 4.8: A fourth constraint that improves the precision of the analyses.
1 @Constraint(
2 op=‘‘begin−of−method’’,
3 trigger=‘‘TRUE’’,
4 requires=‘‘TRUE’’,
5 effect={‘‘CorrectlySelected(∗)’’})

evaluates to True and the second constraint’s trigger predicate evaluates to False. All the variants
therefore evaluate the required predicate of the first constraint. As this evaluates to True as well,
all the variants pass and apply the effects. The analysis works down to line 13, where the second
constraint matches both the operator and the trigger predicate. As the requires predicate is True
again, all variants should pass and apply effects.

The astute reader may have noticed a discrepancy: all the variants passed in Listing 4.7, yet
Table 4.2 reports that the sound analysis produces two false positives. This is because the results
shown in Table 4.2 are from running the sound analysis alongside a sound may-alias analysis,
whereas in Listing 4.7, we assumed a must-alias analysis. As seen in the next chapter, the results
of all three variants are strongly tied to the points-to analysis.

The results are also strongly tied to the precision of the specifications. For example, adding the
specification in Listing 4.8, which adds the relationship CorrectlySelected for all DropDownLists
at the beginning of every method, allows the complete variant to detect the bug in Listing 4.6. The
full discussion of how specifications impact the precision of the analysis, including the impact of
automatically generated specifications, can be found in Chapter 7.
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4.3 Other kinds of specifications

In prior sections, I have used non-relationship predicates like “select == true” or “ctrl instanceof
DropDownList” within a trigger or requires predicate. Both of these are “special purpose” rela-
tionships with a predefined semantics. This section now describes how these are used and the
analyses that are associated with them.

I previously introduced relationship effects and constraints as two kinds of specifications in
Fusion. In this section, I describe a third kind of specification specifically for callbacks. Both
callbacks and relationships effects are syntactic sugar and can be converted into the basic @Con-
straint specification. Finally, this section introduces inferred relationship specifications, which are
uncommonly used but expressive feature of Fusion.

4.3.1 Special purpose relationships

While most of the relationships have an uninterpreted user-defined semantics, it is sometimes
useful to have relationships with a little more power. Therefore, I have provided pre-defined se-
mantics for the equality relation on references and constants (==) and the type relation (instanceof)
for usability purposes.

The Fusion analysis depends on other analyses to evaluate these predicates. The points-to
analysis already used can evaluate both reference equality and type relationships. Additionally,
Fusion uses a boolean constant propagation analysis to evaluate boolean variables and boolean
equality, like “select == true”. It is relatively straightforward to add these special-purpose analy-
ses, and we can imagine extensions to handle integers, enums, and strings as well.

4.3.2 Converting relationship effects

Relationship effects are syntactic sugar that can be easily translated into a constraint form. Rela-
tionship effects are translated by considering them as a constraint on the annotated method with
a True trigger predicate, a True requires predicate, and the effect list as annotated. Test effects
are translated into two constraints that use boolean equality. Figure 4.3 shows example effects
translated into constraints.

4.3.3 Callbacks

While relationship effects provide information to a caller, callback states provide information to a
callee. When frameworks make callbacks into plugin code, there is an implicit contract regarding
when the callback will occur and the states of objects at this point. For example, Vignette 2.1
showed the the plugin developer should be aware that the Page’s controls do not exist in the
PreInit callback and do not have data until the Load callback.

The framework developer can specify this using the @Callback annotation. The @Callback
annotation takes the name of an unary relation on the type of the target object.7 An example of

7The @Callback annotation is very similar to typestate, and indeed, typestate can be used instead of having a state
declaration in this form.
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public class ListControl {
@Child({result, target}, ADD)
@Selected({result}, ADD)
public void getSelectedItem() {
...

}

...

}

public class ListItem {
@Selected({target}, TEST, sel)
public void setSelected(boolean sel) {
...

}

...

}

@Constraint(
op = ‘‘ListControl.getSelectedItem()’’,

trigger = ‘‘true’’,
requires = ‘‘true’’,
effect = {‘‘Child(result, target)’’, ‘‘Selected(result)’’})

public class ListControl {...}

@Constraint(
op = ‘‘ListItem.setSelected(boolean sel)’’,

trigger = ‘‘sel == TRUE’’,
requires = ‘‘TRUE’’,
effect = {‘‘Selected(target)’’})

@Constraint(
op = ‘‘ListItem.setSelected(boolean sel)’’,

trigger = ‘‘sel == FALSE’’,
requires = ‘‘TRUE’’,
effect = {‘‘!Selected(target)’’})

public class ListItem {...}

Figure 4.3: Translating relationship effects into constraints.

using this specification can be seen in Listing 4.9. This example shows how the callback relation-
ships can be used in the constraints to prevent calls from happening within certain callbacks or to
only allow them to be used within some callbacks.

The @Callback annotations above are translated into constraints with an operation that match-
es a “beginning of method” tag on the specified method and a set of effects where the specified
callback relationship is set to True and all others are set to False, as shown in Listing 4.10

With the specifications in Listing 4.9, the defect in Vignette 2.1 would be found by all three
variants, as can be seen in Listing 4.11.

4.3.4 Inferred Relationships

The extrinsic nature of the constraints can make it difficult to place specifications in the correct
location. Consider the ListItemCollection from the DropDownList example. In this example,
the framework developer would like to state that the items in this list are in a Child relationship
with the ListControl parent. While we can annotate the ListItemCollection class with this
information, as seen in Listing 4.12, it seems non-ideal as the ListItemCollection should not
know about ListControls. Additionally, we would have to create these awkward constraints for
every operation in the entire class that can add modify the Child relation.

In these cases, inferred relationships can describe the implicit relationships that can be assumed
any time some other relationship predicate is true. Listing 4.13 shows an example for inferring
a Child relationship based on the relations Item and List. Whenever the relationship context can
show that the trigger predicate is true, it can infer the relationship effects in the effect list. Inferred
relationships allow the framework developer to specify relationship effects that would otherwise
have to be placed on every location that the predicate is true; this would significantly drive up
the cost of adding these specifications. While the example in Listing 4.13 could have been written
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Listing 4.9: Specifications for problem in Vignette 2.1.
1 @Constraint(
2 op=”ListControl.∗∗”,
3 trigger = ”SubControl(target, page)”,
4 requires = ”!PreInit(page)”,
5 effects = {}
6 )
7 @Constraint(
8 op=”ListControl.setDataSource(List data)”,
9 trigger = ”SubControl(target, page)”,

10 requires = ”Loaded(page)”,
11 effects = {}
12 )
13 public class Page {
14 @Callback(”PreInit”)
15 protected void Page_PreInit(object sender, EventArgs e);
16

17 @Callback(”Initialized”)
18 protected void Page_Init(object sender, EventArgs e);
19

20 @Callback(”Loaded”)
21 protected void Page_Load(object sender, EventArgs e);
22 }

Listing 4.10: Translated callback specifications from Listing 4.9.
1 @Constraint(
2 op=”BOM:Page.Page PreInit(object sender, EventArgs e)”,
3 trigger = ”TRUE”,
4 requires = ”TRUE”,
5 effects = {PreInit(target), !Initialized(target), !Loaded(target)}
6 )
7 @Constraint(
8 op=”BOM:Page.Page Init(object sender, EventArgs e)”,
9 trigger = ”TRUE”,

10 requires = ”TRUE”,
11 effects = {!PreInit(target), Initialized(target), !Loaded(target)}
12 )
13 @Constraint(
14 op=”BOM:Page.Page Load(object sender, EventArgs e)”,
15 trigger = ”TRUE”,
16 requires = ”TRUE”,
17 effects = {!PreInit(target), !Initialized(target), Loaded(target)}
18 )
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Listing 4.11: Incorrect usage of the page lifecycle with ρ in comments using the constraints from
Listing 4.9.

1 DropDownList DateYear;

2

3 public Page_PreInit(object sender, EventArgs e)
4 {

5 List<DateTime> Dates;

6 //SubControl(this, DateYear), PreInit(this), !Initialized(this), !Loaded(this)
7 if (!isPostBack)
8 for (int i = 0; i < 4; i++)
9 Dates.Add(System.DateTime.Now.AddYears(i));

10

11 //SubControl(this, DateYear), PreInit(this), !Initialized(this), !Loaded(this)
12 DateYear.setDataSource(Dates); //constraints will fail
13 DateYear.setDataTextField("Year");

14 DateYear.DataBind()

15 }

Listing 4.12: Awkward way of specifying the Child relationship in ListItemCollection.
1 @Constraint(
2 op=”ListItemCollection.remove(ListItem item)”,
3 trigger = ”List(target, ctrl)”,
4 requires = ”TRUE”,
5 effects = {!Item(target, item), !Child(target, ctrl)}
6 )
7 @Constraint(
8 op=”ListItemCollection.add(ListItem item)”,
9 trigger = ”List(target, ctrl)”,

10 requires = ”TRUE”,
11 effects = {Item(target, item), Child(target, ctrl)}
12 )
13 @Constraint(
14 op=”ListItemCollection.contains(ListItem item)”,
15 trigger = ”List(target, ctrl)”,
16 requires = ”TRUE”,
17 effects = {?Item(target, item) : result, ?Child(target, ctrl) : result}
18 )
19 public class ListItemCollection {
20 public void remove(ListItem item);
21

22 public void add(ListItem item);
23

24 public boolean contains(ListItem item);
25 }
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Listing 4.13: Using the Infer specifications to create effects
1 @Infer(
2 trigger=‘‘Item(item, list) and List(list, ctrl)’’,
3 effect={‘‘Child(item, ctrl)’’})
4 public class ListControl {...}

as a traditional constraint, inferred relationships are particularly useful in cases where we need
closures to use the specification several times to create relationships within a more complex data
structure, like a list with no predefined size. In practice, only one API from the Spring case study,
discussed in Section 6.4.3, needed this specification form, but its expressive power made it worthy
of inclusion.

It is possible to produce inferred relationships that directly conflict with the relationship con-
text. To prevent this, the semantics of inferred relationships is that they are ignored in the case
of a conflict, that is, relationships from declared relationship effects and constraints have a higher
precedence. The rationale behind this is that the constraints and relationship effects are explicitly
declared, and this should be reflected by the giving them precedence. An alternative mechanism
would be to signal an error, though it is not currently clear whether this will increase the number
of false positives.

Currently, these specifications are only used on an as-needed basis using backwards chaining.
Because inferred relationships are not generated at every step of the analysis, this is an unsound
and incomplete feature of Fusion, so it is only use by the pragmatic variants for now. This could be
changed if Fusion used forward chaining to greedily create all possible relationships at each step
in the analysis; such an analysis would preserve soundness and completeness, though it would be
very expensive to run.

4.4 Achievement of solution goals

One of the primary goals of this work is to “show that relationships are a practical means to spec-
ify collaboration constraints that occur in Java and XML frameworks.” To do this, the language
must address the common properties of collaboration constraints (Contribution 2c). This section
evaluates Fusion against these properties. Additionally, the language must have properties that
make it practical for industry use (Contribution 2d); this section identifies several key properties
of Fusion that allow it to be a practical specification language.

4.4.1 Can Fusion capture collaboration constraints?

Property 1: Multiple objects As a relationship captures the associations among several objects,
it is a good representation for collaboration constraints. Relationships can also be used to “build-
up” a collaboration in cases where not all the objects involved exist at the start of the collaboration;
for example, the second ListItem in Vignette 3.1 does not appear until halfway through the col-
laboration.
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Property 2: Extrinsic Relationships are not owned by any particular type, so crossing a type
boundary is not an obstacle. The constraints in Fusion can be used to constrain any visible type.
Unlike other specifications, they are not restricted to the defining type. Additionally, the object
being constrained might not be aware of the constraint itself, as the relationships can be added
without its knowledge.

Property 3: Semantic issues As seen, Fusion can handle a wide variety of semantic issues. The
ability to specify callbacks is built into the language, and the ability to specify ordering of opera-
tions is made possible through the use of the trigger predicate to chain several constraints together.
The trigger predicate also makes it possible to specify different constraints based upon primitive
values or object identity.

Property 4: Many artifacts Relationships are not a language-specific abstraction; they are a de-
sign abstraction. Any language with the concept of distinct entities and collaborations among en-
tities can use relationships to describe the collaborations. While this chapter did not show specific
examples with declarative files, the next chapter uses Vignette 2.2 to show how they are handled.

4.4.2 Does Fusion meet the goals for an adoptable, cost-effective tool?

One of the stated goals of Fusion was to be an adoptable, cost-effective solution to the problem.
Chapter 7 discusses the analysis side in more detail, but this section identifies four properties of
the specification language that make it a practical language for industry. Section 6.5 evaluates
these properties in a case study of Spring.

Minimize specification writing costs. A large cost of using any specification and analysis sys-
tem is the cost of writing specifications. It seems to defeat the purpose of such as system to require
the plugin developer, who is already struggling to understand the framework, to also learn a new
language and specify his code. Therefore, Fusion has specifications only on the framework, which
can be written by the framework developer. Therefore, much the burden of learning a new lan-
guage is placed on the expert framework developers, not the novice plugin developers. Addition-
ally, a single framework developer writing specifications can now provide benefit for hundreds
of plugin developers. While the plugin developers may need to be able to read and understand
the specifications in order to debug errors, this is likely easier than writing the specifications, and
future tooling could help explain the specifications in readable English, or even provide suggested
fixes.

While the framework developer receives little direct benefit for writing specifications, it might
improve usage of the framework. It’s also possible that third-party consultants, like those who are
already answering questions on the forums, would be able to sell specification sets for an existing
framework.

Composability and incrementality of constraints. To further reduce the specification burden,
Fusion allows framework developers to specify a single constraint at a time. This allows the
developer to specify the system in an incremental fashion. The only requirement for writing a
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constraint is that the relationships used must be defined. Otherwise, there is there is no need to
specify the entire framework, or even an entire class, in order to get benefit from a single con-
straint. Additionally, as the analysis doesn’t verify the framework itself, the constraints can be
superficial and only on the API of the framework.

The constraints can also compose easily. As seen in the examples, they may use the same rela-
tionships as existing constraints in order to build off of them. Alternately, they may select entirely
different names and be completely independent. This allows for frameworks to be specified sepa-
rately and checked together, and it also allows frameworks to specify dependencies between their
APIs.

I envision that Fusion could be used as a “firefighting” technique when writing a framework;
instead of specifying the entire API up front, the developers can specify parts as needed based
upon the struggles of plugin developers. For example, as it seems clear from the ASP.NET study
that many plugin developer’s problems were due to misuse of the Page lifecycle, this would be
an ideal place to start writing specifications. This concept has its roots in the “incremental reward
principle” used by Halloran and other members of the Fluid team [48].

Localized errors. As seen, the analysis provides plugin developers with an error that directs
them to the problem within their own code, rather than to where the problem is discovered at run
time. The exact location is dependent on how the framework developer specifies it, but this makes
sense as the framework developer is the expert for determining which expression was at fault.

Many options for different kinds of cost tradeoffs. Cost-effectiveness might vary based upon
the kind of framework being used, the kind of plugin, or even the stage of development that the
plugin is in. Fusion provides many different knobs to tune specifically to the needs of the system.
For example, changing the amount of specifications, or even using automated specifications as
described in Chapter 7, can significantly increase the precision of the analysis. The precision can
also be increased using a more precise points-to analysis. Of course, the three variants themselves
also provide a tradeoff point, and Chapter 7 even suggests that while pragmatic may be good for
less mature code, production code might benefit more from the complete analysis.
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Chapter 5
Aliasing and Declarative Files

The previous chapter shows how Fusion can specify and analyze collaboration constraints. How-
ever, while it mentions that the Fusion analysis requires a points-to analysis, it elides all discus-
sion of how this works. This chapter starts by more fully describing how Fusion uses the points-to
analysis in Sections 5.1-5.3. Unfortunately, the existence of declarative files negatively impacts the
precision of the points-to analysis and the Fusion analysis. To regain this lost precision, I introduce
one last piece of the specification language, the restrict-to predicate. This predicate allows re-
lationships to specify important information about the aliasing of variables and allows Fusion to
be surprisingly precise in the presence of declarative files and imprecise points-to analyses.

This chapter supports three of the contributions of this thesis. Section 5.4 validates to Contri-
bution 2b by showing that Fusion can specify collaboration constraints that span across both Java
and XML. Section 5.5 then investigates Contribution 3b by examining the precision problems in
the points-to analysis that occur due to the presence of declarative files, and Section 5.6 provides
a solution to this problem in the form of the restrict-to predicate. Section 5.6 also adds to Con-
tribution 3c by describing how the specification variable binding and the restrict-to predicate
semantics differ in each of the three variants.

5.1 Binding specification variables

To understand how the points-to analysis affects Fusion, it is first necessary to understand how
Fusion uses the results. The points-to analysis provides several potential aliasing configurations
within the heap, and Fusion uses this information to evaluate constraints under all potential con-
ditions.

To explore this further, I formalize how this is done and then provide an intuitive understand-
ing of how the analysis uses the points-to information. Recall that the points to lattice, A is defined
as:

A ::= < Γ`; L >

Γ` ::= {` : τ}

L ::= {x 7→ {`}}

57
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Also recall that a relationship R and the relationship lattice ρ are defined as:

ρ ::= {R 7→ t}

R ::= rel(¯̀)
t ::= True | False | Unknown

While all of these definitions use `, specification predicates are written not on a runtime label, but
on a specification variable, written as y. These are different from the source variables, written as
x.

P ::= P1 ∧ P2 | P1 ∨ P2 | P1 =⇒ P2 | ¬A | A | True | False
A ::= rel(ȳ)

Therefore, to evaluate the truth of a specification predicate, we rely on a substitution σ that re-
places each y with a `.

σ ::= {y 7→ `}

This allows the analysis to evaluate a predicate using the judgment below; the rules for this judg-
ment are in three-value logic and described further in Figures B.19-B.22 of Appendix B. In this
judgment, P[σ] represents the specification predicate with each y substituted by the ` mapped in
σ.

ρ ` P[σ] t

To evaluate the judgment above, Fusion needs to produce all possible substitutions for each
constraint. Specifically, it uses the points-to lattice to generate two sets of σ.

The first set represents the substitutions that are possible without considering the requires pred-
icate. This set is created using the function findLabels, defined in Figure 5.1. This function takes:

1. the points-to lattice A,

2. β, which is a mapping of specification variables y to source variables x for every specification
variable in the operator of the constraint, and

3. Γy , which is a typing context for a set of specification variables, in this case, all specification
variables except those used exclusively by Preq.

The details for how β and Γy are created are beyond the scope of this discussion and can be found
in Appendix B, but they are created in a straightforward and expected way. The purpose of this
function is to find all substitutions such that every y in Γy has a `with a substitutable type and that
any y in β only uses the labels pointed to by the corresponding source variable x.

The second set represents the substitutions including the requires predicate. This is created
using the function allValidSubs, as defined in Figure 5.1. This function also takes the points-to
lattice and a specification typing context. However, it also takes an existing substitution context σ
that it should extend. The function finds all substitutions that can extend σ so that the resulting
substitutions have the same domain as Γy and so that they all satisfy the types defined in Γy .
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findLabels(< Γ`; L >;β; Γy) = Σ

Σ = {σ ′ | σ = {y 7→ ` | y ∈ dom(β) ∧ ` ∈ L(β(y)) ∧ ∃ τ ′ . τ ′ <: Γ`(`) ∧ τ ′ <: Γy(y)} ∧

σ ′ ∈ allValidSubs(< Γ`; L >;σ; Γy)}

allValidSubs(< Γ`; L >;σ; Γy) = Σ

Σ = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ ′ . ∃ τ ′ . τ ′ <: Γ`(`) ∧ τ ′ <: Γy(y)}

Figure 5.1: Functions for generating the substitutions. findLabels uses β to create substitutions
for all specification variables that are bound to a source variable, then uses allValidSubs to gen-
erate substitutions for the remaining, unbound specifications variables in Γy .

With these two sets, Fusion can now check a given constraint under a particular points-to lat-
tice and relationship lattice. As shown previously in Table 4.1, the three variants check constraints
differently with respect to when the predicates can be true. As we will see now, they are also dif-
ferent with respect to how they select a substitution to check. Intuitively, σ represents a possible
heap configuration at run time. Therefore, we expect that the sound variant checks all possible
heaps, and the complete variant will only check a known subset.

For the sound variant, the analysis checks an instruction for a single constraint, op : Ptrg ⇒
Preq ⇓ Ā;. Let β be a binding between the variables of op and the instruction, and let ρ and A be
the entry lattices such that ρ is consistent with A. Also let Γnoreqy be the free variables in op, Ptrg,
and Ā, and let Γ reqy be all the free variables in the constraint, including those in Preq. The sound
variant then check the constraint by ensuring that the following predicate is true:

∀σ ∈ findLabels(A;β; Γynoreq) . ρ ` Ptrg[σ]t ∧ t 6= False =⇒
∀σ ′ ∈ allValidSubs(A;σ; Γyreq) . ρ ` Preq[σ ′]True

The sound variant must ensure that there are no false negatives (with respect to the given lattice
A). Therefore, as any of the possible substitutions can occur at run time, it must check all of them
and uses two universal quantifiers.

The reader might notice that the second quantifier above is redundant; we could have instead
written:

∀σ ∈ findLabels(A;β; Γy)
. ρ ` Ptrg[σ]t ∧ t 6= False =⇒ ρ ` Preq[σ]True

The two quantifiers are necessary because this is another key point where the variants are differ-
ent. As shown below, the complete variant uses an existential for the second quantifier.

∀σ ∈ findLabels(A;β; Γynoreq) . ρ ` Ptrg[σ]True =⇒
∃σ ′ ∈ allValidSubs(A;σ; Γyreq) . ρ ` Preq[σ ′]t ∧ t 6= False

The complete variant must ensure that there are no false positives (with respect to the given lattice
A). To remove the possibility of false positives, the constraint passes as long as there exists some



60 CHAPTER 5. ALIASING AND DECLARATIVE FILES

possibility of the constraint passing at run time; this ensures that the analysis will not give an
error unless there is no possible binding that makes the requires predicate true. Why isn’t the first
quantifier an existential as well then? The complete variant is not complete with respect to the
entire program, rather, it is complete with respect to a given aliasing configuration (as preselected by
the function findLabels). Since this function is binding the specification variables that matched to
a source variable, it is starting with only those substitutions that the points-to analyses deems to
be possible. A more precise points-to analysis would increase this precision.

The pragmatic analysis follows the complete variant in this case, though of course it uses its
own rules for checking Preq as described earlier in Table 4.1. In practice, the second set produces
a significant number of substitutions since the variables are bound to any known object label with
the right type. The likelyhood of all of these passing is low, and in practice, this is the source
of many false positives in the sound variant. Therefore, the pragmatic analysis works as shown
below:

∀σ ∈ findLabels(A;β; Γynoreq) . ρ ` Ptrg[σ]True =⇒
∃σ ′ ∈ allValidSubs(A;σ; Γyreq) . ρ ` Preq[σ ′]True

The above checking is done for each constraint in the system, and any failures for a constraint
to meet the given predicate causes an error to the user for that combination of constraint and
source instruction. At present, the particular substitution that caused the failure is not reported,
but that could be easily added with an appropriate reporting capability to explain the substitution
that causes the error to the user.

5.2 Creating effects

Once the flow function has created substitutions and checked the constraint, it needs to use those
substitutions to create any effects. Unlike the previous section, we now only need to use the first
set of substitutions created by findLabels, as it contains all the specification variables used by the
effects Ā. Additionally, all the variants work the same when producing the effects. In this section,
I’ll describe how effects are created by starting with a single σ for a single constraint and then
working upwards until we change the original lattice ρ to create a new lattice ρ ′. A more formal
description of this is available in Appendix B.

The first step is to create the effects for a single σ. In all variants, if ρ ` Ptrg[σ]True, then the
effects Ā[σ] are created. However, if ρ ` Ptrg[σ]Unknown, then the effects Ā[σ] are still created
but marked as coming from an Unknown with a ∗. For example, if we have a constraint with
effect Selected(item), then when the trigger is True with substitution σ, the analysis produces
Selected(item)[σ] 7→ True, but if the trigger was Unknown, it produces Selected(item)[σ] 7→
True∗. This marker is used later when determining how to handle Unknown predicates without
losing further precision.

When each σ from findLabels has produced a set of effects, they must be merged together. Any
conflicts, such as True and False, are resolved to Unknown. Additionally, starred effects propagate
themselves, that is, merging True and True∗ produces True∗. The rationale behind this is that if
one substitution produces a True, we cannot be sure that this substitution will be used at run time.
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Table 5.1: Sample of rules for the flow function of the two points-to analyses. Assumes a variable
typing environment Γx and the subtyping relation <:. The differences are shaded.

instr fmay−like(< Γ`; L >, instr) fmust−like(< Γ`; L >, instr)
x1 = x2 < Γ`; < Γ`;

L[x2 7→ L(x1)] > L[x2 7→ L(x1)] >

x = new C(x̄) < Γ`, `fresh : C; < Γ`, `fresh : C;

L[x 7→ {`fresh}] > L[x 7→ {`fresh}] >

x1 = x2.method(x̄)) < Γ`, `fresh : Γx(x1); < Γ`, `fresh : Γx(x1);

L[x1 7→ {` | Γ`(`) <: Γx(x1)} ∪ {`fresh} ] > L[x1 7→ {`fresh} ] >

x1 = x2.field < Γ`, `fresh : Γx(x1); < Γ`, `fresh : Γx(x1);

L[x1 7→ {` | Γ`(`) <: Γx(x1)} ∪ {`fresh} ] > L[x1 7→ {`fresh} ] >

The other substitution that produces True∗ may be used instead. This other substitution also has
an Unknown trigger, which may be False at run time. Therefore, it is important to preserve this
possibility so as not to change the effect to True when it may not actually be the case.

Once each constraint has a set of effects, they have to be merged together as well. At this
level, the constraints are merged slightly differently than above. Unlike the substitutions, where
only one is possible, we know that all constraints exist at all times. Therefore, they are treated as
independent events that may change the effects. This means that they can still conflict and resolve
to Unknown, however, merging True from one constraint and True∗ from another produces True.

Finally, the effects must be applied to the original ρ using a weak update. Any non-starred
effects are applied directly. Starred effects will cause the relationship to change to Unknown unless
the original relationship in ρ has the same state as the base of the starred effect. This prevents an
unnecessary loss of precision in cases where the effect is actually maintaining the status quo.

5.3 Points-to analysis

The previous two sections described how the analysis uses the points-to lattice to generate a set
of substitutions σ to check the requires predicate and generate relationship effects. In this section,
we explore how the results of the points-to lattice can directly affect the precision of the Fusion
analysis in practice. We will explore this using a single variant of the analysis (pragmatic) with
two different points-to analyses. The first points-to analysis is akin to a may-alias analysis, while
the second is similar to a must-alias analysis. Table 5.1 shows a selection of transfer functions for
the analyses to highlight their differences. The primary difference is that the may-like analysis
adds in all known labels ` that satisfy the type τ of the source variable x, whereas the must-like
analysis assumes unique references unless it explicitly discovers otherwise.

In the results from Table 4.2, I used the may-like analysis for the sound variant (as it is sound
itself) and the must-like analysis for the complete variant. In this table, the pragmatic variant also
used the must-like analysis. Table 5.2 shows only the results for pragmatic, but with both points-to
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Table 5.2: Results from running the pragmatic variant with different points-to analyses on the
examples from Vignette 3.1

Listing reference Line number
of fault

Pragmatic re-
sults (may-like)

Pragmatic
results (must-
like)

3.1: Naı̈ve selection 7 7 7
3.2: Correct selection - 9 -
3.3: Forgotten deselection 14 14 14
3.4: Nothing selected 14 14 14
3.5: Two lists, incorrect 13 13 13
(Not given): Two lists, correct - 13 -
3.6: Swapped selection 7, 9 7, 9 7, 9

analyses. Notice that both catch all the errors, but the may-like analyses causes false positives in
both of the correct examples (though still not as many as the sound variant).

Let’s explore the correct selection example to see what happened. We’ll use the pragmatic vari-
ant with the may-like points-to analysis. Listing 5.1 shows both the lattices in comments between
each line.

Everything works as expected until we get to line 18. Notice that at this instruction, the points-
to analysis needs to decide what newSel can point to. Since it is not sure whether or not it aliases
oldSel, it points to both `2 and `4. Therefore, Fusion will have to run the analysis with both of
these possibilities, and it will create effects for two possible substitutions.

σ1 = {newSel 7→ `2, ctrl 7→ `1, coll 7→ `3} produces Child(`2, `1) 7→ True

σ2 = {newSel 7→ `4, ctrl 7→ `1, coll 7→ `3} produces Child(`4, `1) 7→ True

When these substitutions are merged together, both relationships will go to True*.
Therefore, as only Child(`2, `1) is True in ρ, only this effect remains, and Child(`4, `1) is lost.
At first, this lack of precision causes no problems. Line 21 will still verify correctly for the sec-

ond constraint in Listing 4.4 with both substitutions as σ1 will cause both the trigger and required
predicate to evaluate to True, and the σ2 will cause an Unknown trigger so the requires predicate
will not be checked However, it also means that both of these substitutions will produce effects
on the relationship CorrectlySelected(`1), and the second substitution will be setting it to True*
because its trigger was unknown. Both will again merge to True*, but as the relationship exists
in ρ as False, it will be changed to Unknown, not True. When the analysis reaches the end of the
method, it attempts to verify the final constraint in Listing 4.4. As the trigger is True but the re-
quires predicate is now Unknown, the pragmatic variant using a may-like points-to analysis gives
an error.

The type of problem described above occurs in any situation where the code has two vari-
ables of the same type, which is why the problem also appears in the correct example with two
DropDownLists. The must-like analysis simply avoids this by assuming the uniqueness of point-
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Listing 5.1: Correct usage of a DropDownList run with the may-like points-to analysis and the
pragmatic variant of Fusion, with A and ρ in comments.

1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel, oldSel;

6 ListItemCollection coll;

7 //<l1:DropDownList ; list−>{l1}>
8 //−
9 oldSel = list.getSelectedItem();

10 //<l1:DropDownList, l2:ListItem ; list7→{l1}, oldSel7→{l2}>
11 //Selected(l2), Child(l2, l1)
12 oldSel.setSelected(false);
13 //<l1:DropDownList, l2:ListItem ; list7→{l1}, oldSel7→{l2}>
14 //!Selected(l2), Child(l2, l1), !CorrectlySelected(l1)
15 coll = list.getItems();

16 //<l1:DropDownList, l2:ListItem, l3: ListItemCollection ; list7→{l1}, oldSel7→{l2}, coll7→{l3}>
17 //!Selected(l2), Child(l2, l1), !CorrectlySelected(l1), Items(l3, l1)
18 newSel = coll.findByValue("foo");

19 //<l1:DropDownList, l2:ListItem, l3: ListItemCollection, l4: ListItem ;
20 //list7→{l1}, oldSel7→{l2}, coll7→{l3}, newSel7→{l2,l4}>
21 //!Selected(l2), Child(l2, l1), !CorrectlySelected(l1), Items(l3, l1)
22 newSel.setSelected(true);
23 //<l1:DropDownList, l2:ListItem, l3: ListItemCollection, l4: ListItem ;
24 //list7→{l1}, oldSel7→{l2}, coll7→{l3}, newSel7→{l2,l4}>
25 //Child(l2, l1), Items(l3, l1)
26 }
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ers unless otherwise specified, which reduces the number of substitutions used by the Fusion
analysis.

There are two possible solutions to this problem, which are beyond the scope of this thesis.
The first solution is to improve the points-to analysis, either through deeper analysis techniques
or through specifications. Much research has been done in these areas [20, 21, 71, 80, 103], so using
a more sophisticated analysis would certainly be feasible. The second solution is to keep separate
lattices for each potential heap configuration so that they do not ever merge and loose precision.
Doing so would require more implementation effort and may cause an exponential blowup in
large methods, thus limiting the scalability of the analysis.

The important issue to take away from this section is that every additional label in the points-to
lattice can cause later imprecision. This issue will become more relevant later in this chapter.

5.4 Getting relationships from declarative artifacts

We’ll now leave behind points-to analyses, aliases, and labels for a section to discuss the use of
declarative files in Fusion. Don’t despair though, we will be back to the complexities of aliasing
shortly.

Chapter 2 introduces the concept of declarative artifacts and how software frameworks use these
declarative artifacts to increase their flexibility. While these artifacts are increasingly common, no
known general purpose verification technique can handle these files alongside the program code.
Of course, several types of declarative artifacts provide basic checking (such as schemas for XML),
and many frameworks provide custom verification, built into the IDE, that provide basic checking
for their own artifacts (like the ASP.NET, Eclipse, and Spring frameworks). There are also many
research proposals to increase the amount of verification for a given artifact, for example, adding
typechecking to XML. Finally, there are two research proposals that verify declarative files with
code for a specific framework [6, 114], but there is nothing for general purpose checking. As we
will see, it is absolutely necessary to verify declarative files with their associated program code
rather than verifying them separately. This chapter adds to Contribution 2b by showing how
Fusion specifies collaboration constraints that span across both Java and XML.

Consider the example with the LoginView, as described in Vignette 2.2. By themselves, both
the code in Listing 5.3 and the declarative ASPX file in Listing 5.2 look correct, and traditional ver-
ifiers would check this appropriately. However, when viewed together, there is clearly a problem
because the DropDownList is inside the LoginView’s LoggedInTemplate.

As presented in Chapter 4, Fusion would also not be able to properly verify the incorrect and
correct versions of this program. Specifying the API is straightforward and is shown in Listing
5.4. The constraint on LoginView.findControl(String) says that if the requested control is in
the LoggedInTemplate, we must know that a user is logged in. However, this requires us to have
a LoggedInControl relationship with the appropriate parameters, and this relationship cannot be
generated with the program code shown, even in the correct program in Listing 2.4.

While the LoggedInControl relationship does not exist in the program code, it does exist in the
ASPX file in Listing 5.2. In this file, the requested DropDownList is clearly inside the LoggedIn-
Template. Therefore, we must somehow extract this relationship from the ASPX.
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Listing 5.2: ASPX with a LoginView
1 <asp:LoginView ID="LoginScreen" runat="server">
2 <AnonymousTemplate>

3 You can only set up your account

4 when you are logged in.

5 </AnonymousTemplate>

6 <LoggedInTemplate>

7 <h4>Location</h4>

8 <asp:DropDownList ID="LocationList"
9 runat="server"/>

10 <asp:Button ID="ContinueButton"
11 runat="server" Text="Continue"/>

12 </LoggedInTemplate>

13 </asp:LoginView>

Listing 5.3: Incorrect way of retrieving controls in a LoginView
1 LoginView LoginScreen;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 if (!isPostback()) {
6 DropDownList list = (DropDownList)

7 LoginScreen.FindControl("LocationList");

8 list.DataSource = ...;

9 list.DataBind();

10 }

11 }
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Listing 5.4: Specifications for correct usage of LoginView.findControl(String)
1 public class Control {
2 public Control findControl(String name) {...}
3 ...

4 }

5

6 @Constraint(
7 op=”LoginView.findControl(String name) : Control”,
8 trigger = ”Name(name, result) AND LoggedInControl(result, target)”,
9 requires = ”SubControl(target, page) AND PageRequest(request, page) AND Authenticated(request)”,

10 effects = {}
11 )
12 @Constraint(
13 op=”LoginView.findControl(String name) : Control”,
14 trigger = ”Name(name, result) AND AnonymousControl(result, target)”,
15 requires = ”SubControl(target, page) AND PageRequest(request, page) AND !Authenticated(request)”,
16 effects = {}
17 )
18 public class LoginView extends Control {
19 ...

20 }

21

22 public class Page extends Control {
23 @PageRequest({result, target}, ADD)
24 public Request getRequest() {...}
25 ...

26 }

27

28 public class Request {
29 @Authenticated({this}, TEST, result)
30 public boolean isAuthenticated() {...}
31 ...

32 }
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To get these relationships, Fusion supports using XQuery to query XML-based artifacts for
relationships. These relationships are then used as the starting lattice ρ before analyzing any pro-
gram code. While Fusion currently only supports XML-based files, a similar extraction mechanism
could be used for other file types as well.

The XQuery for retrieving the relationships SubControl, LoggedInControl, and Anonymous-
Control are shown in Listing 5.5. This listing first defines several locals used to get the names and
types of the elements, then it declares four queries that retrieve the relationships. While these
are unwieldy looking specifications, they would be used for all plugins of a given framework, so
the specification cost is amortized.1 Fusion also supports the ability to bind the this variable to
an object in the declarative artifact; this XQuery is shown at the bottom of Listing 5.5. A similar
mechanism could also be used to bind fields.

When the XQuery from Listing 5.5 is run on the ASPX from Listing 5.2, Fusion gets a starting
lattice as shown:

SubControl(LoginScreen,MyPage) 7→ True

LoggedInControl(LocationList, LoginScreen) 7→ True

LoggedInControl(ContinueButton, LoginScreen) 7→ True

This lattice will then allow Fusion to have the relationships necessary to verify the correct code
and find the error in the broken code.

5.5 Impact of more labels

When the XQuery runs, it influences the Fusion analysis by creating a starting relationship lat-
tice ρ. These relationships must refer to labels in the points-to lattice; therefore the XQuery will
also affect the starting points-to lattice A. As we might guess based upon earlier sections, these
additional labels are going to impact the precision of the points-to analysis. This section exam-
ines these resulting precision problems in the points-to analysis that occur due to the presence of
declarative files,

Let’s start by considering how the may-like points-to analysis runs on a very simple code
snippet. Listing 5.6 shows this code snippet with A in the comments. As expected, the may-like
points to analysis shows two cases: either barList points to the same object as fooList or it points
to a different object. This is a small loss in precision, but it is still manageable.

Now consider what happens when we associate the code with the ASPX in Listing 5.7. This
creates a starting A that contains two labels, representing the two DropDownLists in the ASPX.
Listing 5.8 shows what happens to the points-to lattice when run on the code snippet now. While
fooList still only points to a single fresh label (since it was created by constructor), the barList
could now point to any one of four possible objects: the same object as fooList, one of the two lists

1Part of the ugliness is due to the ugliness of XML itself and its inappropriateness for being used for this purpose in
the first place. C’est la vie.
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Listing 5.5: XQuery to retrieve the relationships SubControl, LoggedInControl, and Anonymous-
Control

1 declare namespace asp="aspx";
2 declare namespace fusion="http://code.google.com/p/fusion";
3 declare variable $doc as xs:string external;
4

5 declare function local:type($element as node()) as xs:string {
6 if (local-name($element) = "Page" and namespace-uri($element) = "aspx")
7 then $element/@codebehind
8 else concat("edu.cmu.cs.fusion.test.aspnet.api.",local-name($element))
9 };

10

11 let $page := doc($doc)/asp:Page/.
12 for $control in $page/asp:*
13 where fusion:isSubtype(local:type($control), "edu.cmu.cs.fusion.test.aspnet.api.Control")
14 return <Relationship name="SubControl" effect="ADD">
15 <Object name ="{data($control/@ID)}" type="{local:type($control)}"/>

16 <Object name="{data($page/@ID)}" type="{local:type($page)}"/>

17 </Relationship>

18

19 let $page := doc($doc)/asp:Page/.
20 for $control in $page/asp:*
21 for $subControl in $control/asp:*
22 where fusion:isSubtype(local:type($control), "edu.cmu.cs.fusion.test.aspnet.api.Control") and
23 fusion:isSubtype(local:type($subControl), "edu.cmu.cs.fusion.test.aspnet.api.Control")

24 return <Relationship name="SubControl" effect="ADD">
25 <Object name ="{data($subControl/@ID)}" type="{local:type($subControl)}"/>

26 <Object name ="{data($control/@ID)}" type="{local:type($control)}"/>

27 </Relationship>

28

29 let $page := doc($doc)/asp:Page/.
30 for $control in $page/asp:LoginView
31 for $subControl in $control/AnonymousTemplate/asp:*
32 where fusion:isSubtype(local:type($subControl), "edu.cmu.cs.fusion.test.aspnet.api.Control")
33 return <Relationship name="AnonymousControl" effect="ADD">
34 <Object name ="{data($subControl/@ID)}" type="{local:type($subControl)}"/>

35 <Object name ="{data($control/@ID)}" type="{local:type($control)}"/>

36 </Relationship>

37

38 let $page := doc($doc)/asp:Page/.
39 for $control in $page/asp:LoginView
40 for $subControl in $control/LoggedInTemplate/asp:*
41 where fusion:isSubtype(local:type($subControl), "edu.cmu.cs.fusion.test.aspnet.api.Control")
42 return <Relationship name="LoggedInControl" effect="ADD">
43 <Object name ="{data($subControl/@ID)}" type="{local:type($subControl)}"/>

44 <Object name ="{data($control/@ID)}" type="{local:type($control)}"/>

45 </Relationship>

46

47 let $page := doc($doc)/asp:Page/.
48 return <ThisObject name="{data($page/@ID)}" type="{local:type($page)}"/>
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in the ASPX, or some yet-unseen list. More knowledge from the ASPX file has made the analysis
significantly less precise rather than more precise.

We might think we could solve this problem as we did earlier by switching to the must-like
analysis. However, recall that this analysis assumes uniqueness for all variables, so it only gives
barList the option of pointing to a fresh label, as seen in Listing 5.9. Clearly, this is not the
programmer’s intent either.

What we really want is to tell the points-to analysis that the only valid label is the bar label,
since that’s the object we requested with the call to findControl. However, there is no way for the
points-to analysis to know this expected semantics. Even if we were to use a more sophisticated
points-to analysis, it would not ensure that we get the right object back from findControl; the
most we could expect is to be able to specify is that fooList and barList do not alias.

5.6 The restrict predicate

The problem in the prior section was that the points-to analysis has no way to select out a par-
ticular object from a group of objects. Fusion solves this by using relationships to specify which
labels make sense. For example, what we really want to say about is that the returned object from
Control.findControls(String name) satisfies the predicate:

Name(name, result) ∧ SubControl(result, target)

That is, the returned object is a sub-control of the object we called findControl on and it has the
name we are searching for.

To support this, Fusion constraints contain one more predicate, the restrict-to predicate. This
section shows how the restrict-to predicate solves the precision problem described by Section 5.5
and explains the different semantics of this predicate in the three variants of the analysis. An ex-
ample of this predicate can be seen in the ControlAPI constraints in Listing 5.10. The semantics of
this predicate is when the trigger predicate is True, the analysis restricts the potential substitutions
to only those that pass the restrict-to predicate. The sound and complete variants only restrict a
False predicate, while the pragmatic variant restricts either False or Unknown. The formal seman-
tics of this predicate can be found in Appendix B. In practice, this predicate is frequently Unknown,
but the sound and complete variants are not sound or complete unless they accept an Unknown
restrict-to predicate.

With this in place, the analysis can now finally verify programs that use declarative artifacts.
Listing 5.11 shows the snippet run with the restrict-to predicates described above; notice that
now barList only points to the single DropDownList with the name bar, as we expected. This
also allows us to finally verify the examples from Vignette 2.2; Table 5.3 provides the results for
running the analysis with three variants, including the pragmatic variant with both versions. As
the restrict-to predicate makes the may-like analysis a practical option, I use the may-like analysis
with the pragmatic variant for the remainder of the thesis.

As seen, a few points of variation in these analyses makes a large difference in their results.
Table 5.4 lists all the differences between the three variants of the Fusion analysis.
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Listing 5.6: A simple code snippet, with the may-like points-to analysis.
1 //<−;−>
2 DropDownList fooList = new DropDownList();
3 //<l1:DropDownList ; fooList7→{l1}>
4 DropDownList barList = (DropDownList) findControl("bar");

5 //<l1:DropDownList, l2:DropDownList ; fooList7→{l1}, barList7→{l1,l2}>

Listing 5.7: An ASPX file associated with code snippet from 5.6.
1 <asp:Content ID="Content1" ContentPlaceHolderID="PageContent">

2 <asp:DropDownList ID="bar">

3 <asp:DropDownList ID="baz"/>

4 </asp:Content>

Listing 5.8: Our code snippet again, now associated with the ASPX from Listing 5.7.
1 //<bar:DropDownList, baz:DropDownList ; − >
2 DropDownList fooList = new DropDownList();
3 //<bar:DropDownList, baz:DropDownList, l1:DropDownList ; fooList7→{l1}>
4 DropDownList barList = (DropDownList) findControl("bar");

5 //<bar:DropDownList, baz:DropDownList, l1:DropDownList, l2:DropDownList ;
6 // fooList7→{l1}, barList7→{l1, l2, bar, baz}>

Listing 5.9: Using the must-like analysis doesn’t do what we want either.
1 //<bar:DropDownList, baz:DropDownList ; − >
2 DropDownList fooList = new DropDownList();
3 //<bar:DropDownList, baz:DropDownList, l1:DropDownList ; fooList7→{l1}>
4 DropDownList barList = (DropDownList) findControl("bar");

5 //<bar:DropDownList, baz:DropDownList, l1:DropDownList, l2:DropDownList ; fooList7→{l1}, barList7→{l2}>
Table 5.3: Results from running each variant on the examples from Vignette 2.2.

Listing reference Line number
of fault

Sound
results

Pragmatic
results,
may-like

Pragmatic
results,
must-like

Complete
results

2.3: Incorrect usage 6 6, 6 6 - -
2.4: Correct usage - 7, 7 - - -

Table 5.4: All differences between sound, complete, and pragmatic variants.

Variant Trigger predicate
checks when

Requires quantifies
σwith

Requires predicate
passes when

Restrict-to
allows σwhen

Sound True/Unknown ∀ True True/Unknown
Complete True ∃ True/Unknown True/Unknown
Pragmatic True ∃ True True
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Listing 5.10: Constraining LoginView.findLabels(String)with a restrict-to predicate.
1 @Constraint(
2 op=”Control.findControl(String name) : Control”,
3 trigger = ”True”,
4 restrict−to = ”Name(name, result) AND SubControl(result, target)”,
5 requires = ”True”,
6 effects = {}
7 )
8 public class Control {
9 public Control findControl(String name) {...}

10 ...

11 }

12

13 @Constraint(
14 op=”LoginView.findControl(String name) : Control”,
15 trigger = ”Name(name, result) AND LoggedInControl(result, target)”,
16 requires = ”SubControl(target, page) AND PageRequest(request, page) AND Authenticated(request)”,
17 effects = {}
18 )
19 @Constraint(
20 op=”LoginView.findControl(String name) : Control”,
21 trigger = ”Name(name, result) AND AnonymousControl(result, target)”,
22 requires = ”SubControl(target, page) AND PageRequest(request, page) AND !Authenticated(request)”,
23 effects = {}
24 )
25 public class LoginView extends Control {
26 ...

27 }

Listing 5.11: Using the restrict-to predicate as seen in Listing 5.10 to get the aliasing that we want
with the may-like points-to analysis

1 //<bar:DropDownList, baz:DropDownList ; − >
2 DropDownList fooList = new DropDownList();
3 //<bar:DropDownList, baz:DropDownList, l1:DropDownList ; fooList7→{l1}>
4 DropDownList barList = (DropDownList) findControl("bar");

5 //<bar:DropDownList, baz:DropDownList, l1:DropDownList ; fooList7→{l1}, barList7→{bar}>
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Chapter 6
Case Study: Spring Framework

To validate that Fusion is a general tool for specifying collaboration constraints, I studied how
Fusion can be used to specify the Spring framework, a framework with a surprisingly different
design from ASP.NET. In this chapter, I’ll present the methodology of this study and some quan-
titative results that compare the variants of Fusion. I’ll also present four collaboration constraints
in Spring that I specified with Fusion and use them to highlight several interesting tradeoffs that
occur when using Fusion.

Based on this study, there is good reason to believe that relationship-based specifications can
be used to specify collaboration constraints within software frameworks that use a wide variety
of mechanisms to interact with plugins. Overall, I had to make very few changes to Fusion to be
able to specify the collaboration constraints described in this chapter. There are several features
that would allow for more collaboration constraints to be specified, but all of these are engineering
efforts that would not require any additional research contributions.

This chapter provides validation for several contributions of this thesis:

1. Several of the examples shown utilize XML and can be specified by Fusion (Contribution
2b).

2. Section 6.3 shows that Fusion can handle all four common properties of collaboration con-
straint (Contribution 2c).

3. Section 6.5 shows that Fusion contains several important properties that are necessary for a
practical specification language (Contribution 2d).

4. All of the examples in chapter show how Fusion can detect errors using static analysis and
direct the user to the root cause of the error (Contribution 3a).

5. The case study shows how the three variants differ both in the raw results of the analysis
and in how the results differ depending on the form of the specifications used (Contribution
3c).

73
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6.1 Why Spring

When selecting a framework for this case study, I considered several criteria. First, the framework
had to be written in Java and XML, as Fusion currently only supports those languages. Second,
I chose not to use a framework that I was already familiar with in order to prevent unintentional
bias from seeing similar collaboration constraints before starting the evaluation. Third, I wanted to
use a framework which was large, complex, and uses several mechanisms to interact with plugin
code, not just traditional OO mechanisms. Finally, I wanted a framework with a large enough
following to have an active community forum from which I could draw examples. The Spring
Framework fit all of these criteria.

The primary downside to using Spring as a case study is that it is a competitor to ASP.NET.
Both frameworks are web application frameworks, meant to help developers build large industrial
web applications. In theory, this shared domain might mean similar architecture and design of
the framework, which might result in similar collaboration constraints. However, I found that the
two frameworks are quite different from each other at nearly every level of abstraction. While
both frameworks use the model-view-controller pattern to represent a request for a web page
and responding with the HTML for this request, the similarities end there. The frameworks have
completely different structures to their APIs, different mechanisms for connecting several pages
into a web application, and different reuse capabilities for common tasks. The reason for all these
differences is because the two framework have nearly opposite business drivers. This completely
changes how the frameworks are architected, and the differences trickle down into even low-level
design decisions.

In ASP.NET, the primary business driver is simple: keep the client using as many Microsoft
technologies as possible. In fact, ASP.NET will generally only work with other Microsoft prod-
ucts: the plugin developer must deploy their application using Microsoft’s web server running
on a Microsoft operating system, and likely using a Microsoft database. Even the development is
controlled by Microsoft: the languages, IDE, and build systems are all required Microsoft prod-
ucts, and many shops will use Microsoft source repositories and project management software as
well.

All this control over every aspect of development and deployment means that Microsoft can
make many assumptions about the environment in order to simplify the design of ASP.NET. For
instance, there’s no need for generic interfaces to many components when there is only one option.
The framework can also take advantage of the IDE control and use tools to auto-generate common
code and provide WYSIWYG editors for creating the UI of a page. This all leads to smaller, cleaner
APIs. Of course, the plugin developers must be prepared to fully buy-in to Microsoft and might
not be able to interact easily with legacy systems, but Microsoft hopes that such systems will be
converted and further lock the application to Microsoft.

Spring takes a very different approach to attracting customers. Instead of locking in clients,
Spring aims to support a wide variety of legacy systems and be as interoperable as possible.
VMWare, the owners of Spring, boast that “Spring provides a range of capabilities for creating enter-
prise Java, rich web, and enterprise integration applications that can be consumed in a lightweight,
a-la-carte manner.” [110] Each component of Spring can be used independently or can be replaced
by a third-party component, and it is assumed that developers will be integrating with an exist-
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ing third-party web application framework. The book “Pro Spring”, written by a member of the
Spring team, devotes a chapter on how to integrate Spring with Struts, the next most popular Java
web application framework [50]. Both the official Spring reference manual, and a second popular
Spring book, go further by describing how to integrate Spring with Struts, WebWork, Tapestry,
and Java Server Faces [62, 123].

Even the language used to create the views is modular in Spring. While views in ASP.NET
are always written in ASPX, Spring views can be created from many different technologies. While
JSP is popular, both of the books above dedicate a chapter to describing other technologies with
Spring, such as Velocity, Tiles, RSS, and even how to integrate with a custom technology.

While Spring provides a great amount of flexibility, the cost to the design is high. Each point
of variability must be behind an API, and the API must be as generic as possible. In order to
promote reuse then, the class hierarchies are necessarily deep so that the most generic API is at
the top of the hierarchy and the most specific APIs are at the leaves. As an example, consider the
controller hierarchy in Figure 6.1. The top most interface has a single method, which is certainly
more simple than the Page API in ASP.NET. This interface provides no code reuse capability and
effectively represents the raw request from the user for a web page. Any further functionality is
provided by the leaf classes, like SimpleFormController, which is somewhat equivalent to a very
simple Page in ASP.NET. However, the API of SimpleFormController is much more complex as
it is spread across this entire hierarchy.

The differences in business drivers have lead to significant differences in the design of these
two frameworks. This makes Spring a useful and interesting framework for studying the general-
izability of relationship-based specifications.

6.2 Methodology for gathering examples

In Chapter 3, I described a study on the ASP.NET help forums where I went through 271 forum
threads that had last activity during a one week time period in October, 2006. From this, I identi-
fied 16 threads where a developer had a specific coding problem and received a usable response.
I identified the collaboration constraint within these 16 threads and noted the properties that they
shared in common.

This same methodology was not effective for gathering examples from the Spring forums. Un-
like the ASP.NET forums, the Spring forums have no reward system to encourage the community
to answer questions; therefore, there were significant numbers of unanswered questions. Addi-
tionally, as Spring is meant to integrate with so many other technologies, there were far more
tutorial requests of the form “How do I get Spring to work with X?”

In order to find examples effectively, I created an automatic filtering system that would scan
threads for specific properties and only return those that met all of my criteria. The criteria I used
are:

• Has a <pre> tag. To ensure that there was a specific example being discussed and filter out
requests for tutorials and documentation, I accepted only threads where there was code
posted within an HTML <pre> tag (for pre-formatted text, commonly used for displaying
code). This might miss threads where people did not use the <pre> tag to display code.
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Controller
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AbstractURLViewController

UrlFilenameViewController

BaseCommandController
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Figure 6.1: UML class diagram of the Spring Controller hierarchy. Italicized class names are
abstract classes or interfaces. This diagram also lists the number of public and protected methods
defined or redefined in each class. The most commonly extended class is generally regarded to
be SimpleFormController, which is five levels deep in the hierarchy and has access to 77 public
or protected methods. Some of these are implementations of an abstract method declared higher
in the interface or overridden implementations, but most are not.
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• Uses words “exception” or “error”. Again to filter out requests for tutorials and documentation,
I accepted only threads where the words “exception” or “error” appeared somewhere. I
found this had a higher false positive rate than I expected, as people were asking for tutorials
on how to show an error message. However, it generally seemed to keep only posts where
some error occurred in a developer’s program. This unfortunately means that I missed many
issues where the error was unexpected run time behavior, rather than an exception.

• Responded to by a top-poster. I accepted only threads where one of the responders was in the
top-25 of all posters. I found that these posters are careful to respond only to problems that
they can understand and reproduce, and they are more likely to provide a solution. This
filtering mechanism will miss any threads that were correctly solved by a user with a lower
post count.

• Has an affirmation. To ensure that there actually was a solution presented, I accepted only
threads where the original poster had a secondary post with one of the following phrases:
“solved”, “that work”, “works”, and “working”. This is meant to capture threads where the
original poster returns to say “Thanks! That worked for me.” This filter will miss threads
with solutions where the original poster either did not return or did not respond in this way.

Additionally, I limited the date range to be before October of 2007 in order to capture only Spring
2.0, as the next version of Spring had significant API changes.1

As seen in Table 6.1, these criteria also appeared in my 16 ASP.NET examples. Therefore, while
not gathered using the same method, I believe that this technique was a good way to capture the
interesting and relevant posts for this case study.

6.3 Quantitative Results

Using the methodology described above, I found 156 threads that met my criteria; all of these
are archived [2]. I then determined which of these threads described a violated collaboration
constraint, and of those, which were possible to describe using Fusion. As Table 6.2 shows, 53
had collaboration constraints, and 17 of these were specifiable in Fusion. Another 34 would be
specifiable with additional feature support for Fusion, as detailed in Table 6.2. There were also
two threads that had a collaboration constraint, but the posters had so completely mangled their
code that I could see no way for Fusion to help them. Most collaboration constraints require that
the developer do something correct for the constraint to trigger in the first place. However, these
developers appeared to not even be using the right APIs to start with and needed to start over
entirely.

The remaining 103 threads were not useful for the study. These contained mostly requests
for tutorials, but there were also feature requests, Spring bug reports, issues about associated
frameworks (like Acegi Security framework or Hibernate persistence framework). There were also

1I chose not to use the newer version of Spring as it heavily uses annotations rather than subtyping to identify call-
back locations. While it is theoretically possible to use relationships for either one, I have not implemented annotation
support in Fusion at this time.
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Table 6.1: Filtering properties applied to the ASP.NET example threads from Table 3.1 in Chap-
ter 3. Nearly all provided code, and about half used the keywords I was looking for. A majority
were also responded to by an All-Star or Star level responder, indicating a significant amount of
expertise. While few people on the forums directly affirmed a correct solution in a posting, many
would come back to check the “solution” box next to the post which solved their problem, indi-
cated with “(Checked)” in the column. Spring does not have this feature on their forum. Note
that only 5 out of 16 met all four criteria; this implies that there may be many more interesting
threads in Spring that I overlooked by requiring all four criteria.

Number Code Error All-Star or Star responder Affirmed
1031123 Y Error Y
1031139 Y Error, Exception Y
1031804 Y
1032020 Y Error Y
1031933 Y Y
1030504 Y Y
1027694 Y
1032187 Y (Checked)
1032278 Y Exception Y (Checked)
1032624 Y
1032991 Y Error Y
1033020 Y Error Y Y
1033046 Y
1031946 Y Error Y (Checked)
1033217 Y Error Y Y
1033450 Y Error Y (Checked)
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Table 6.2: Breakdown of threads in Spring. There were several features that could be added to
make Fusion work for more constraints. JSP is a commonly-used language to describe the view of
a Spring webpage, and there were many constraints that need to match JSP code to the XML and
Java. OGNL is a language that can be used inside of XML to execute simple expressions; Spring
uses it to execute arbitrary code in XML. Two threads were about a collaboration constraint
that describes a requirement on the filesystem, though nearly all of the JSP-based collaboration
constraints would also need this feature support. Some collaboration constraints required the
XML to be aware of an object’s fields and methods, so field and reflection support are necessary
to handle these. Finally, simple string manipulation, such as handling concatenate, was needed
for one thread in addition to many of the JSP, reflection, and file resource threads.

Not a collaboration constraint 103
Requires JSP support 17
Requires OGNL support 4
Requires file resource support 2
Requires field support 5
Requires reflection support 5
String manipulation 1
Broken beyond repair 2
Specifiable in Fusion 17
Total 156

a few postings which might have been collaboration constraints, but there was so little information
that I could not even categorize the problem.

Surprisingly, the collaboration constraints described in the 17 threads only spanned eight col-
laboration constraints, as shown in Table 6.3. Two particularly problematic constraints covered
53% of the threads. Like the examples in ASP.NET, where three constraints covered 63% of the
threads, it appears that specifying only a few problematic APIs would provide significant benefit.

Based on the examples from the threads and the solutions given, I created 24 test programs,
including good and bad programs for each of the APIs [1]. To keep these programs similar to
snippets from a fully functioning web application, I created them by modifying the JPetStore [64]
and PhoneBook [108] examples that are distributed with Spring. The examples included the rele-
vant classes containing the error, all referenced classes, and the original XML configuration files.
It was important to include these files since, as discussed in Chapter 5, their presence changes the
analysis results. For each API, I used as much of the code as possible from the original forum
thread and copied it into either JPetStore or PhoneBook to make the “bad” examples. I created
the good example by making the change suggested by the responders on the forum threads. I
also created additional examples by making some reasonable assumptions of other ways that a
developer might break the same constraint.

To test Fusion’s ability to detect the errors, I created specifications for each of the eight API’s. I
then ran the three variants of the analysis; the pragmatic variant was run with the may-like variant
of the points-to analysis. The detailed results are displayed in Table 6.4, and a summary is shown
in Table 6.5.

As seen in Table 6.4, the pragmatic variant with the shared points-to analysis clearly outshone
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Table 6.3: Analysis of collaboration constraints found in the Spring threads. I used the same crite-
ria for classification as in Table 3.2 in the ASP.NET study. These threads can be accessed through
the URL http://forum.springsource.org/showthread.php?<NUMBER> and also are archived at
[2].

Numbers API (describ-
ing section)

#Classes,
#Objects

Extrinsic v.
Intrinsic

Semantics Artifact
Types

13320,
21751,
33139,
33168,
33456,
36333

OnSubmit
(§6.4.2)

6, 5 Extrinsic Callback,
Identity,
Value

Java

26787,
36109,
43182

SetupForm
(§A.4)

1, 1 Extrinsic Callback,
Identity,
Temporal

XML

32429,
39040

AppContext
(§6.4.1)

3, 2 Extrinsic Identity,
Value

Java, XML

28603,
39209

MAVModel
(§A.1)

4, 4 Intrinsic Callback,
Identity

Java

39480 RefData
(§6.4.4)

4, 4 Extrinsic Callback,
Identity,
Value

Java, XML

36891 ViewResolver
(§6.4.3)

2, 2 Extrinsic Temporal,
Value

XML

38940 Action (§A.2) 2, 1 Extrinsic Identity,
Value

Java, XML

43643 SerialFlow
(§A.3)

2, 1 Extrinsic Identity,
Value

Java, XML



6.3. QUANTITATIVE RESULTS 81

Table 6.4: Complete results from the Spring case study. The first columns give the API name,
the section this API is discussed in, and the names of the example programs that I created based
upon the forum threads. The “Ideal” column shows what a perfect analysis should give; an “X”
represents an error, and a checkmark represents a passing example. The final three columns
show the results from the analyses. Results that match the ideal are in bold green font. The full
code for the examples is archived in [1].

API (Section) Example name Ideal Sound Pragmatic Complete
AppContext (§6.4.1) Correct X X X X
AppContext (§6.4.1) BadFactory X X X X
AppContext (§6.4.1) BadBean X X X X
OnSubmit (§6.4.2) SameViewsCorrect X X X X
OnSubmit (§6.4.2) DiffViewsCorrect X X X X
OnSubmit (§6.4.2) SameViewsIncorrect X X X X
ViewResolver (§6.4.3) CorrectOnlyOne X X X X
ViewResolver (§6.4.3) CorrectChainEnd X X X X
ViewResolver (§6.4.3) NotEndOfChain X X X X
RefData (§6.4.4) Correct X X X X
RefData (§6.4.4) ChangedRequest X X X X
RefData (§6.4.4) UsedFBO X X X X
MAVModel (§A.1) CorrectWithPOJO X X X X
MAVModel (§A.1) CorrectWithMap X X X X
MAVModel (§A.1) IncorrectWithMap X X X X
MAVModel (§A.1) IncorrectAddingMap X X X X
Action (§A.2) CorrectType X X X X
Action (§A.2) IncorrectType X X X X
SerialFlow (§A.3) CorrectFlow X X X X
SerialFlow (§A.3) CorrectNotFlow X X X X
SerialFlow (§A.3) IncorrectNotSerial X X X X
SetupForm (§A.4) CalledSetupDirect X X X X
SetupForm (§A.4) CalledSetupIndirect X X X X
SetupForm (§A.4) ForgotSetup X X X X

Table 6.5: Summary of results from the Spring case study from Table 6.4. This table compares re-
sults of the 24 examples from the three variants to the “ideal” analysis that has no false results. In
these examples, the pragmatic variant matched ideal, and the complete variant did surprisingly
well. The sound variant was never able to be precise enough to verify a program as correct.

True Positive (X) True Negative (X) False Positive (X) False Negative (X)
Ideal 11 13 0 0
Sound 11 0 13 0
Pragmatic 11 13 0 0
Complete 7 13 0 4
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the competition. While it appears perfect in these examples, it would not likely do as well in
large programs with more aliasing possibilities and would begin to act more like the complete
analysis. However, for running on examples of the size posted on the forums, it does quite well
and arguably would have helped many people find the defect in their programs without using the
forums. The sound analysis was never able to gain enough precision to verify a correct program as
correct, and based on the results, it would be exceptionally difficult to add enough specifications
to provide enough precision for it. Additionally, it would need a much more precise points-to
analysis, as that was the root cause of many defects The complete analysis was able to gain enough
precision to successfully detect several defects; the defects that it missed were frequently due to the
points-to analysis missing a possible substitution from the declarative files. Because the pragmatic
analysis uses a heuristic to determine which pointers are interesting, it was able to avoid many of
the resulting precision problems.

Regarding performance, the analysis runs fast enough to not be a concern for small programs
such as the ones in Table 6.4. The first run of the analysis takes longer as there is a global search
through the classpath to create a type hierarchy; while this should theoretically as fast as the com-
piler, there are several bugs in Eclipse’s implementation that cause this to take several minutes to
run. Because of this major performance hit, Fusion caches the entire hierarchy for later use. Sec-
ondary runs take only a few seconds, as the Fusion analysis itself is very fast. A further discussion
of performance and scalability, on a more substantial program, can be found in Chapter 7.

6.4 Detailed Examples

This section will present four specific examples from the case study to better understand the nature
of the collaboration constraints that were seen and the extent to which Fusion could specify the
constraint. The first two examples are meant to show the expressiveness of Fusion; the first is a
small example that is not easy to capture in other specification systems, and the second is a larger
example that uses nearly all of the expressiveness of Fusion. The next two examples are interesting
because they made explicit some of the tradeoffs that occur in a specification language as abstract
as Fusion and show its flexibility to meet the needs of the specification writer. The remaining
examples in the case study were similar in nature to those in this section, and brief descriptions of
the problems alongside the Fusion specifications for them can be found in Appendix A.

6.4.1 Object identity (AppContext API)

In previous chapters, I have described object identity as an important aspect of collaboration con-
straints, and it is one which is not easily capturable using many existing specifications systems,
as discussed in Chapter 8. The Spring forums provide an example that showcases how object
identity is an integral part of interacting with modern frameworks like Spring.

Like many other frameworks, Spring uses dependency injection to automatically wire together
components from a declarative file [41]. Dependency injection is a pattern that allows an object to
create and connect together other objects as specified in another location; it separates the objects
being connected from the location that specifies the dependencies between them. In Spring, the
developer creates new objects by declaring them in a <bean> tag in a Spring configuration file.
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ApplicationContextSupport

ApplicationContext

void setApplicationContext(ApplicationContext ctx)
ApplicationContext getApplicationContext()

BeanFactory
Object getBean(String beanName)

ListableBeanFactory HierarchicalBeanFactory

Figure 6.2: Class diagram of the ApplicationContext and ApplicationObjectSupport.

Listing 6.1: An example of dependency injection in Spring.
1 <beans>

2 <bean id="accountValidator" class="AccountValidator"/>

3

4 <bean id="petDatabase" class="Database">

5 <property name="user" value="foo"/>

6 <property name="databaseName" value="pets"/>

7 </bean>

8

9 <bean id="myStore" class="PetStore">

10 <property name="database" ref="petDatabase"/>

11 </bean>

12

13 <bean id="accountController" class="AccountFormController">

14 <property name="petStore" ref="myStore"/>

15 <property name="validator" ref="accountValidator"/>

16 </bean>

17 </beans>

Listing 6.1 shows example tags; Spring will use this information to create four objects with the
type specified. Based on this file, Spring will set the database field of PetStore object to be the
object declared as petDatabase, and the AccountFormController that is created will reference
both the AccountValidator and the PetStore objects. Spring uses reflection and setter methods
to provide this functionality.

In Spring, dependency injection is used for many things, but one of the most important is
injecting the application context. The application context represents the collection of bean objects
that Spring instantiated together from the same configuration file, and it is concretely represented
with the ApplicationContext type. The ApplicationContext interface, seen in Figure 6.2, has a
one method of interest for our purposes: Object getBean(String beanName). This method will
return the unique object represented by the given name in the configuration file. For example, we
can call ac.getBean("myStore") to get the PetStore object that is represented in Listing 6.1. The
ApplicationContext itself is injected into any bean which extends ApplicationObjectSupport;
this class has a single setter/getter pair to inject and retrieve the ApplicationContext.
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In thread number 32429 [88], these two simple interfaces cause a problem for the user “pom-
piuses”, who posts about a null pointer problem he is having. He is helped by Marten Deinum,
a Spring expert who is frequently on the forums. A shortened version of the exchange between
then, shown below, is quite interesting.

pompiuses: If I extend ApplicationObjectSupport, I should according to documentation
be able to get the applicationContext using the method getApplicationContext().

The problem is that it always returns null no matter what. What I’m I missing here??

I know for a fact the the applicationContext is not null, because if I i.e extend Abstract-
Controller in one of my controllers and then use the getApplicationContext()method,
it works.

Marten Deinum: How are you instantiating the object extending ApplicationObject-
Support. It implements the ApplicationContextAware interface so the Application-
Context should be automatically injected if specified/configured inside a applicationContext
file.

pompiuses: I instantiate it like any other object ;
MyObject myObject = new MyObject();

Exactly what needs to be specified inside a applicationContext file? MyObject?

Marten Deinum: When you create an object with new it isn’t a Spring managed bean and
hence not being injected with anything or under Spring management. Assuming you already
running some kind of application you already have a applicationContext.xml (or whatever the
name is you specified). For more information check the first few chapters of the Spring reference
guide.

Configure your bean as a prototype and retrieve instances from the applicationcontext.
<bean id="myObject" class="MyObject" scope="prototype"/>

Then from some other spring managed bean
MyObject object = (MyObject) context.getBean("myObject");

pompiuses: Yes I know I can create a bean in the application context and retrieve it the way
you describe, but that’s not the issue here.

As I wrote, MyObject extends ApplicationObjectSupport. That should enable MyObject
to access the ApplicationContext using the getApplicationContext() method.

I want this because then I can fetch beans, using applicationContext.getbean("some-
Bean"), from MyObject.

But since getApplicationContext() always returns null, something is not right.

Marten Deinum: Wel actually it is

First of all if you want to have the applicationContext injected it MUST be a spring managed
bean. If it isn’t your ApplicationContext isn’t going to be injected. So object created with
new SomeObject implementing ApplicationContextAware are never going to be injected
with the applicationcontext....
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(This is followed by a detailed one-page explanation about the internals of how this
works.)

pompiuses: Thanks for the great input! I got it working by adding this line into my applica-
tionContext.xml:
<bean id="myObjectBean" class="com.something.MyObject"/>

In this exchange, Marten quickly guessed, and confirmed, the root of the problem: the poster
was creating objects with new, rather than allowing them to be “Spring-managed” by creating
them in the XML configuration file. Even with an expert, pompiuses requires two explanations in
order to understand these fairly simple interface. This user was not fully aware of how the object’s
identity, not its type, is responsible for whether getApplicationContext() returns null.

Rather than a page of English text, I’ll specify the constraint using a few Fusion specifications.
To represent an object that is Spring-managed, there will be a relationship

Context(String,Object,ApplicationContext)

where the first parameter is the unique name of a bean from the configuration file, the second
parameter is the bean itself, and the third parameter is the application context that manages
the bean. This single relationship will allow us to specify both of the constraints surrounding
ApplicationContext.

First, to get an ApplicationContext, the ApplicationObjectSupport object that we have
must already be managed by an ApplicationContext. The constraint for this is simple:
1 @Constraint(
2 op=‘‘ApplicationObjectSupport.getApplicationContext() : ApplicationContext’’,
3 restrictTo=‘‘Context(name, target, result)’’,
4 requires=‘‘Context(name, target, result)’’
5 )

That is, we restrict this call to only return an object for which a Context exists, and we require that
such a Context actually exists.

The second constraint is that when we have an ApplicationContext, all requests to get a bean
must be valid. As it turns out, this constraint has identical form to the one above.
1 @Constraint(
2 op=‘‘ApplicationContext.getBean(String name) : Object’’,
3 restrictTo=‘‘Context(name, result, target)’’,
4 requires=‘‘Context(name, result, target)’’
5 )

Of course, for these constraints to work, we must have prior knowledge about the Context
relationships that exist from the XML configuration files. Listing 6.2 provides the XQuery that
makes this happen.

What is particularly interesting about this example is that a type-based approach cannot cap-
ture unique identities of objects, yet only a few specifications and a single relationship can specify
this problem. This example could be further improved if Fusion was aware of the file-system re-
sources; this would allow Fusion to properly handle the case where a single application context
loads beans from two or more XML files. In its current state, Fusion will treat these as separate
application contexts.
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Listing 6.2: XQuery to retrieve the relationship Context from a Spring configuration file
1 declare namespace sf="http://www.springframework.org/schema/beans";
2 declare variable $doc as xs:string external;
3

4 for $bean in doc($doc)/sf:beans/sf:bean
5 return <Relationship name="Context" effect="ADD">
6 <Object name ="{data($bean/@id)}" type="java.lang.String"/>

7 <Object name ="{data($bean/@id)}" type="{data($bean/@class)}"/>

8 <Object name ="{$doc}" type="org.springframework.context.ApplicationContext"/>

9 </Relationship>

End-User

HTTP GET/POST
(URL)

HTTP RESPONSE
(HTML)

Spring Web Server

Front controller MyController

Request

ModelAndView

View

Model

HTML

Figure 6.3: A diagram showing the data flow from a user’s browser through the Spring frame-
work and back to the user as HTML.

6.4.2 Expressiveness for complex constraints (OnSubmit API)

In this section, I present an API that is both difficult to use (6 threads referenced this API, as seen in
Table 6.3) and which fully exercises the expressiveness of the specification language. The example
comes from the SimpleFormController class, perhaps one of the most commonly used classes of
the Spring MVC framework. This API is discussed in all the popular books on Spring [50, 62, 123]
and included in the official tutorial on the MVC framework [94], yet it is still an API that is easy
to break in many ways.

It is best to first understand how the API is used in most situations. At a high level, the in-
teraction between the end-user and the Spring MVC components is as shown in Figure 6.3. The
end-user requests a web page containing a form using an HTTP GET request. Spring looks up
the Controller for this request and passes the request on to this Controller. The controller will
return a ModelAndView object back to the Spring framework; this object contains the name of a
view and a Map of the model data that the view might need. The Spring framework then finds the
view (likely a JSP page), passes it the model data, and returns HTML to the user.

When the user enters data into their browser and clicks the submit button, the browser sends
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Listing 6.3: A simple form to edit an account
1 public class EditAccountForm extends SimpleFormController {
2 private Database db;
3

4 public void setDatabase(AccountDatabase db) {this.db = db;}
5

6 public Object formBackingObject(HttpServletRequest request) throws Exception {
7 Integer id = request.getAttribute("accountID");

8 if (id == null || id.intValue() <= 0)
9 throw new AccountException("Can only edit accounts with an id greater than 0")

10 return db.getAccount(id.getInteger());
11 }

12

13 public Map referenceData(HttpServletRequest request) throws Exception {
14 Map data = new HashMap();
15 data.put("states", db.getAllStates());

16 data.put("countries", db.getAllCountries());

17 return data;
18 }

19

20 public ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
21 Object command, BindException errors) throws Exception {
22 Account account = (Account)command;

23 db.save(account);

24 return new ModelAndView(getSuccessView(), null);
25 }

26 }

an HTTP POST message to the Spring framework with the user’s data attached. The POST pro-
cess happens nearly the same way as the GET process. The only difference might be that the
Controller stores the user data submitted and likely returns a different model and view for the
user to move on to (ie: a “Thank you for submitting!” page).

The purpose of the SimpleFormController is to encapsulate much of this for reuse. Develop-
ers can extend from SimpleFormController to easily create a simple form with a single submit
button and can override key methods to get basic functionality. For example, Listing 6.3 pro-
vides an implementation for a form to edit account information. The method formBackingObject
returns an object that represents the initial data to show to the user (the existing account in the
database). The method referenceData returns a Map of all data that is relevant to the form, but
is not part of an individual submission (like the list of states and countries). Finally, the method
onSubmit stores the data to the database and sends the user to a “success” page to confirm that
their account change was saved.

The last step necessary to make this work is the XML configuration file, seen in Listing 6.4. As
seen, this creates an instance of the class in Listing 6.3 with a particular form view and success
view. The command name will match the command name used in the form view JSP, and that
view will expect an object with the type given by command type. The command type is also the
same as the type returned by formBackingObject. As given in Listings 6.3 and 6.4, this form will
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Listing 6.4: Configuration for an edit account form
1 <bean id="editAccountForm" class="AccountFormController">

2 <property name="database" ref="myAccountDatabase"/>

3 <property name="formView" value="editAccount"/>

4 <property name="successView" value="thanks"/>

5 <property name="commandName" value="accountForm"/>

6 <property name="commandType" value="Account"/>

7 </bean>

work as expected.
Now, we will add a seemingly minor twist. Instead of returning to a thank you page, let’s

say our developer wants to go back to the same form. Therefore, in Listing 6.4, she changes the
success view as follows:

4 <property name="successView" value="editAccount"/>

Our developer isn’t entirely naive; she knows that in order to go to the form view, she’ll need to
provide the appropriate model data. Therefore, she also changes the return from the onSubmit
method to return the user’s entered data.2

20 public ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
21 Object command, BindException errors) throws Exception {
22 Account account = (Account)command;

23 accounts.save(account);

24 return new ModelAndView(getSuccessView(), errors.getModel());
25 }

She runs her application, and at first, everything appears fine. She can enter data on her form, she
can submit it, and it sends her back to the form again, with almost all of her data in place. Her text
boxes all have data, but the drop down lists for the states and countries are completely empty!

As it turns out, when an HTTP POST occurs to the SimpleFormController, it will bind the
user’s data into errors.getModel(), but it won’t call referenceData and bind that as well. Pre-
sumably, this is because the reference data won’t be needed for the success view. Of course, this
isn’t the case when the success view happens to be the form view.

There are two ways to solve this problem. The first is to manually call referenceData and
store the result into the model map, but this is not recommended. The recommended practice is
to instead return from onSubmitwith a call to showForm, as shown:

20 public ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
21 Object command, BindException errors) throws Exception {
22 Account account = (Account)command;

23 accounts.save(account);

24 return showForm(request, response, errors);
25 }

2Don’t ask why the model data is stored in an object called errors with type BindException. It’s not my design
choice, nor is it relevant to the problem, and the answer may be longer than this thesis. Just go with it.
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This call is made automatically when an HTTP GET occurs, but not on HTTP POST. In addition to
setting up the reference data, it also does several other tasks necessary for proper form function-
ality.

This constraint is very simple to trigger (all we need is for the success view to be the same as
the form view), yet very difficult to discover and fix. Of course, by specifying this constraint in
Fusion, we will help the developer to find the problem before she runs her application and walks
through all the steps necessary to trigger the problem.

To specify this constraint in Fusion, we will need four relationship types:

1. FormViewName(SimpleFormController, String) represents the association between a Sim-
pleFormController and the string id of its form view.

2. SuccessViewName(SimpleFormController, String) represents the association between a Sim-
pleFormController and the string id of its success view.

3. MAVViewName(ModelAndView, String) represents the relationship between a ModelAndView
object and the string id of the view it contains.

4. ShowForm(ModelAndView, HttpServletRequest, BindException) represents the relationship
between a HttpServletRequest and a BindException when they are used as parameters to
a showForm call and return the given ModelAndView.

The only relationships retrieved from XML are the FormViewName and SuccessViewName rela-
tionships; the XQuery to retrieve these is shown in Listing 6.5.

The specifications for the constraint on how to return from SimpleFormController.onSubmit
are in Listing 6.6. The first two specifications are straightforward: upon requesting either a form
view or a success view, Fusion will restrict the possible options for the return value to be only what
was already known from the configuration file. The next two are also straightforward, as they
simply associate a ModelAndView object with the view parameter that was used at its construction
with the MAVViewName relationship. The next specification is more interesting; the goal here is to
find out that the returned ModelAndView from a call to showForm always will have the form view
as its view. Since we already have the FormViewName relationship and wish to use the one we
have, this relationship appears in the trigger predicate. This will then bind the view parameter to
the appropriate object when we create the MAVViewName relationship later.

Finally, the constraint itself is at the end of the onSubmit method, specified with the opera-
tion EOM: SimpleFormController.onSubmit. Enforcing the desired rule is now simple. We are
only concerned with the case where we are attempting to return a ModelAndView object from
this method, and that ModelAndView object’s view is our form view. In this case, we require that
ModelAndView must have been the result of a proper call to showForm.

As seen in Table 6.4, this constraint works exactly as expected with the pragmatic variant. In
the original example, where the success view and form view are different, the final constraint
won’t trigger because the view of the ModelAndView being returned is not a form view. However,
if it is a form view, then it will ensure that this ModelAndView object was the result of a call to
showForm, as opposed to a call to new ModelAndView.
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Listing 6.5: Retrieve the relationships FormViewName and SuccessViewName from a Spring
XML file

1 declare namespace sf="http://www.springframework.org/schema/beans";
2 declare namespace fusion="http://code.google.com/p/fusion";
3 declare variable $doc as xs:string external;
4

5 for $bean in doc($doc)/sf:beans/sf:bean
6 let $formView := $bean/sf:property[@name="formView"]
7 where fusion:isSubtype($bean/@class,"org.springframework.web.servlet.mvc.SimpleFormController")
8 and not(empty($formView))
9 return <Relationship name="FormViewName" effect="ADD">

10 <Object name ="{data($bean/@id)}" type="{data($bean/@class)}"/>

11 <Object name ="{data($formView/@value)}" type="java.lang.String"/>

12 </Relationship>

13

14 for $bean in doc($doc)/sf:beans/sf:bean
15 let $successView := $bean/sf:property[@name="successView"]
16 where fusion:isSubtype($bean/@class,"org.springframework.web.servlet.mvc.SimpleFormController")
17 and not(empty($successView))
18 return <Relationship name="SuccessViewName" effect="ADD">
19 <Object name ="{data($bean/@id)}" type="{data($bean/@class)}"/>

20 <Object name ="{data($successView/@value)}" type="java.lang.String"/>

21 </Relationship>

6.4.3 Trigger predicate v. Requires predicate (ViewResolver API)

The next example highlights how the pragmatic variant is affected by the form of the specifi-
cations. In particular, we will see two specifications that, while identical within the sound and
complete variants, are different under the pragmatic variant due to how the pragmatic variant
treats the trigger and requires predicates differently.

This example will study the use of ViewResolvers in Spring. As seen in the last section,
Controllers return a ModelAndView object which contains the name of a view. A ViewResolver
looks up this name, retrieves a file on the system, and does any processing to associate the model
with the view. For example, the InternalResourceViewResolver in Listing 6.7 will look up a JSP
file and use the model data as the parameters to the JSP. After processing, the resulting data is sent
back to the end-user that made the original HTTP Request.

In Spring, a ViewResolvermay handle HTML, JSP, TXT, or even a PDF. To deal with all of these
within a single application, Spring allows a programmer to chain ViewResolvers together so that
if the first one in the chain cannot find the view that goes with the identifier, it can pass the request
on to the next ViewResolver. However, some ViewResolvers don’t forward the request through;
these ViewResolvers can only be the last item in the chain. The InternalResourceViewResolver
is one such example; if it cannot find the view for an identifier, it will simply return with no view.
In fact, all subtypes of UrlBasedViewResolver, of which InternalResourceViewResolver is one,
will not forward a request and must be last in the chain.

This is a particularly interesting example as it is an instance of broken behavioral subtyping.
Notice that the API of ViewResolver presumes that ViewResolvers may be arbitrarily chained
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Listing 6.6: Specifications for the correct return from SimpleFormController.onSubmit
1 @Constraint(
2 op=‘‘SimpleFormController.getFormView() : String’’,
3 restrictTo=‘‘FormViewName(target, result)’’
4 )
5 @Constraint(
6 op=‘‘SimpleFormController.getSuccessView() : String’’,
7 restrictTo=‘‘SuccessViewName(target, result)’’
8 )
9

10 @Constraint(
11 op=‘‘ModelAndView(String view)’’,
12 effect={‘‘MAVViewName(result, view)’’}
13 )
14 @Constraint(
15 op=‘‘ModelAndView(String view, Map model)’’,
16 effect={‘‘MAVViewName(result, view)’’}
17 )
18

19 @Constraint(
20 op=‘‘SimpleFormController.showForm(HttpServletRequest request, HttpServletResponse response,
21 BindException errors) : ModelAndView’’,
22 trigger=‘‘FormViewName(target, view)’’,
23 effect={‘‘MAVViewName(result, view)’’, ‘‘ShowForm(result, request, errors)’’}
24 )
25

26 @Constraint(
27 op=‘‘EOM: SimpleFormController.onSubmit(HttpServletRequest request, HttpServletResponse response,
28 Object command, BindException errors) : ModelAndView’’,
29 trigger=‘‘MAVViewName(result, view) AND FormViewName(target, view)’’,
30 requires=‘‘ShowForm(result, request, errors)’’
31 )

Listing 6.7: Incorrect resolver chain
1 <beans>

2 <bean id="jspViewResolver"

3 class="org.springframework.web.servlet.view.InternalResourceViewResolver">

4 <property name="order" value="1"/>

5 <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>

6 <property name="prefix" value="/WEB-INF/jsp/"/>

7 <property name="suffix" value=".jsp"/>

8 </bean>

9

10 <bean id="alternativeViewResolver"

11 class="org.springframework.web.servlet.view.ResourceBundleViewResolver">

12 <property name="order" value="2"/>

13 <property name="basename" value="views"/>

14 </bean>

15 </beans
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Listing 6.8: XQuery to retrieve the relationship ResolverChain from a Spring configuration file
1 declare namespace sf="http://www.springframework.org/schema/beans";
2 declare namespace fusion="http://code.google.com/p/fusion"
3 declare variable $doc as xs:string external;
4

5 for $res1 in doc($doc)/sf:beans/sf:bean
6 for $res2 in doc($doc)/sf:beans/sf:bean
7 where fusion:isSubtype($res1/@class, "ViewResolver") and
8 fusion:isSubtype($res2/@class, "ViewResolver") and
9 $res1/sf:property[@name="order"]/@value = ($res2/sf:property[@name="order"]/@value - 1)

10 return <Relationship name="ResolverChain" effect="ADD">
11 <Object name ="{data($res1/@id)}" type="{data($res1/@class)}"/>

12 <Object name ="{data($res2/@id)}" type="{data($res2/@class)}"/>

13 </Relationship>

together. However, UrlBasedViewResolver restricts the API so that it must be the last in a given
chain. Because of this, it is not correct to substitute a UrlBasedViewResolver anywhere that a
ViewResolver is used.

This can cause confusion, as was the case for the programmer “ilpata” in thread number 36891
[56] from Table 6.3. This programmer was attempting to use two ViewResolvers but chained them
so that the InternalResourceViewResolverwas first rather than last, as seen by the configuration
file posted in Listing 6.7. This programmer was particularly confused because there was a sec-
ondary bug that would cause the ResourceBundleViewResolver to fail if it was ever run, so from
“ilpata”’s perspective, it was at least partially working when the InternalResourceViewResolver
was first in the chain. Due to the delayed nature of the error when the InternalResourceView-
Resolver is first in the chain, “ilpata” assumed that this was more correct than the opposite and
so had to be told three times by the experts that this was the primary issue and that a secondary
issue was causing the other error.3 Because of this, the thread took three days to resolve.

By specifying this in Fusion, we can detect the defect at compile time, and hopefully make it
clear to “ilpata” earlier that the chaining issue is the primary problem. To create the constraint, I
use the relation

ResolverChain(ViewResolver, ViewResolver)

to describes a chain of two resolvers where the second parameter comes after the first parameter
in the chain. A larger chain of size n can then be represented by n − 1 ResolverChain relation-
ships. The XQuery in Listing 6.8 will retrieve these relationships from a Spring XML file; thus,
the XML from Listing 6.7 will produce the single relationship ResolverChain(jspViewResolver,
alternativeViewResolver).

The constraint itself seems fairly straightforward. As this constraint only concerns XML, and
not Java, we will use the “XML” operator in Fusion to verify that the XML passes the constraint
right after all XML files have been processed by the XQuery. At this point, if we have an object of
type UrlBasedViewResolver, we must ensure that it does not have anything after it in the chain.
This could be written as:

3The secondary issue is not currently specifiable by Fusion, as it requires knowledge of URLs and resources.
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Listing 6.9: Correct resolver chain of three resolvers
1 <beans>

2 <bean id="primaryViewResolver" class="org.springframework.web.servlet.view.XMLViewResolver">

3 <property name="order" value="1"/>

4 </bean>

5

6 <bean id="alternativeViewResolver"

7 class="org.springframework.web.servlet.view.ResourceBundleViewResolver">

8 <property name="order" value="2"/>

9 <property name="basename" value="views"/>

10 </bean>

11

12 <bean id="jspViewResolver"

13 class="org.springframework.web.servlet.view.InternalResourceViewResolver">

14 <property name="order" value="3"/>

15 <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>

16 <property name="prefix" value="/WEB-INF/jsp/"/>

17 <property name="suffix" value=".jsp"/>

18 </bean>

19 </beans>

1 @Constraint(
2 op=‘‘XML’’,
3 trigger=‘‘prevRev instanceof UrlBasedViewResolver’’,
4 requires=‘‘!ResolverChain(prevRev, nextRev)’’
5 )

The constraint above will allow all three variants to detect the error in Listing 6.7. However,
when this constraint is used on correct code, such as that in Listing 6.9, something interesting
occurs: the pragmatic variant believes there is still a bug. A little investigation reveals the source:
while the trigger predicate is True, the requires predicate is Unknown. While we do not have any
ResolverChain relationships with jspViewResolver as the first parameter, we don’t know that
those relationships are false, either. Our XQuery only created relationships; it did not specify
the non existence of the relationships ResolverChain(jspViewResolver, primaryViewResolver) and
ResolverChain(jspViewResolver, alternativeViewResolver).

There are two ways to address this issue. The first would be to modify the XQuery to specify
non-existence of all other possible relationships. This will have the side effect of also increasing
the precision of the sound and complete variants, but the specification cost is high and the analysis
run time will be high as well. The second is a seemingly innocuous change: swap the trigger and
requires predicate to be a logically equivalent constraint of the form:

1 @Constraint(
2 op=‘‘XML’’,
3 trigger=‘‘ResolverChain(prevRev, nextRev)’’,
4 requires=‘‘prevRev !instanceof UrlBasedViewResolver’’
5 )
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This works because now the relationship which can produce Unknown is in the trigger clause
and the instanceof predicate, which only evaluates to True or False, is in the requires clause.

This should seem amiss to the reader: up until this point, we have thought of the association
between trigger and requires to be implication. That is, Ptrg =⇒ Preq. However, we have just
determined that, for the pragmatic variant, A =⇒ ¬B is not equivalent to B =⇒ ¬A! In fact,
as seen by Table 6.6, these are also not equivalent in the pragmatic variant to A ∧ B =⇒ False.
While all three forms are logically equivalent4, and do produce the same results within the sound
and complete variants, the pragmatic variant treats them differently.

This is a core feature of the pragmatic variant’s heuristic. The pragmatic variant assumes that
if there is enough knowledge for the trigger predicate to be known, then there must be enough
for the requires predicate. While this works well in instances where there is no negation, it can
cause interesting results when there is negation in the requires predicate, as most constraints and
XQuery do not remove relationships explicitly. Unfortunately, there is no hard rule for how to
use negation in the requires predicate, and how to write the specification depends on the desired
results as shown in Table 6.6. Luckily, using negation seems to be an uncommon paradigm in
practice; only this constraint and the constraint from Vignette 3.1 use negation, and the constraints
in Vignette 3.1 do explicitly remove the relationship in question, thus avoiding the entire problem..

This constraint highlights how the specification writer’s choices make large effects on the anal-
ysis results, even on small, well defined constraints. The benefit of Fusion is that it uses heuristics
about how a developer might typically write a specification in order to achieve cost-effective re-
sults. The entire purpose of the pragmatic variant is to encapsulate a heuristic that triggers are
intended to be true, rather than unknown. While such heuristics can backfire, they generally pro-
vide better results than either a provably sound or provably complete system, as seen in the results
from Table 6.4.

6.4.4 Objects v. Operations (RefData API)

The final example explores the tradeoffs that can occur between the complexity of the specification
and the precision of the analysis. As it will turn out, more complex and precise specifications are
not necessarily better!

Recall that SimpleFormController.referenceData should return a Map that maps Strings
to Objects for the view to use. This map will contain any data needed for the view, with the
exception of the form backing object. Therefore, most implementations of referenceData take the
following steps:

1. Create a Map

2. Get values out of the Request

3. Use above values to retrieve data from elsewhere, like a database

4They are actually not equivalent when there are variables bound by one and not by the other. While this happens
to be the case here (recall the two quantifiers from Chapter 5), it is a secondary issue. The phenomenon described on
the pragmatic variant will even arise when a single quantifier works over both A and B.
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Listing 6.10: Original buggy implementation of referenceData, as posted by CuriousHARD
[26]

1 public class QuotationCntrl extends AbstractWizardFormController {
2 protected Map referenceData(HttpServletRequest request, Object command,
3 Errors errors, int page) throws Exception {
4 model = new HashMap<String, Object>();
5 model.put("quotation", formBackingObject(request));

6

7 if (page == 0)
8 request.setAttribute("branches", dao.getBranches());

9 else if (page == 1)
10 request.setAttribute("vh", dao.getVehicleDescription());

11 else if (page == 2) {
12 request.setAttribute("policyCoverTypes", dao.getPolicyCoverTypes());

13 request.setAttribute("companies", dao.getInsuranceCompanies());

14 }

15 return model;
16 }

17 ...

18 }

4. Put data into the Map using predetermined String constants that match the variables used
in the associated view

As simple as this sounds, the user “CuriousHARD” ran into problems with this when the form
kept resetting the user’s data. After posting for help on the forums [26], the user “Marten Deinum”
found several problems in CuriousHARD’s code, including two related to the referenceData
method displayed in Listing 6.10.

1. The first problem is that the code in Listing 6.10 directly manipulates the request object. This
makes this code fragile, as there is no guarantee that this object’s data will be propagated
throughout the system; it is given as a parameter for reading data, not for writing data. As
seen in Listing 6.11, the correct way to set the values is to create and manipulate a Map that
is returned from this method and use the request as a read-only structure.

2. The second problem is on line 5 of Listing 6.10, where the code actually puts the form back-
ing object into the returned Map. As the form backing object is handled separately by the
framework, it should not be put into this Map, as can be seen in Listing 6.11. Doing so caused
the problem seen by CuriousHARD, where the form kept overwriting the user’s data with a
new form backing object.

Notice that both of these constraints are extrinsic (they constrain operations HttpServlet-
Request and Map respectively), and they only make this constraint within the context of a call
to referenceData. Therefore, we will use a @Callback specification to signal whether we are
within a referenceData method. As it turns out, there are actually four such methods in the
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Listing 6.11: Correct version of referenceData, as posted by Marten Deinum [26]
1 public class QuotationCntrl extends AbstractWizardFormController {
2 protected Map referenceData(HttpServletRequest request, Object command,
3 Errors errors, int page) throws Exception {
4 model = new HashMap<String, Object>();
5

6 if (page == 0)
7 map.put("branches", dao.getBranches());

8 else if (page == 1)
9 map.put("vh", dao.getVehicleDescription());

10 else if (page == 2) {
11 map.put("policyCoverTypes", dao.getPolicyCoverTypes());

12 map.put("companies", dao.getInsuranceCompanies());

13 }

14 return model;
15 }

16 ...

17 }

AbstractFormController hierarchy, so we specify all of them as shown in Listing 6.12.5 The
unary relationship used for this callback has type RefData(AbstractFormController).

I’ll now provide specifications for the first constraint. At the simplest level, we want to prevent
calls to request.setAttribute from within referenceData. This can be accomplished with the
following specification:

1 @Constraint(
2 op=‘‘ServletRequest.setAttribute(String str, Object obj) : void’’,
3 trigger=‘‘RefData(ctrlr)’’,
4 requires=‘‘FALSE’’
5 )

However, the specification above might be overly general. Is it really the case that we want to
prevent all calls to this method, on all request objects? What we really want is to prevent mod-
ification to only the request object used as a parameter into referenceData. By abstracting the
read-only state of this parameter into a relationship, we can do this instead:

1 @Constraint(
2 op=‘‘BOM: AbstractFormController.referenceData(HttpServletRequest req, Object command,
3 Errors errors) : Map’’,
4 effect={‘‘ReadOnly(req)’’}
5 )
6 @Constraint(
7 op=‘‘BOM: SimpleFormController.referenceData(HttpServletRequest req) : Map’’,
8 effect={‘‘ReadOnly(req)’’}
9 )

10 @Constraint(
11 op=‘‘BOM: AbstractWizardFormController.referenceData(HttpServletRequest req, int page) : Map’’,

5This is not unusual in Spring: there are four versions of the showForm method and three versions of the onSubmit
method. For simplicity, I elided these multiple versions in the earlier example.
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12 effect={‘‘ReadOnly(req)’’}
13 )
14 @Constraint(
15 op=‘‘BOM: AbstractWizardFormController.referenceData(HttpServletRequest req, Object command,
16 Errors errors, int page) : Map’’,
17 effect={‘‘ReadOnly(req)’’}
18 )
19 @Constraint(
20 op=‘‘HttpServletRequest.setAttribute(String str, Object obj) : void’’,
21 trigger=‘‘TRUE’’,
22 requires=‘‘!ReadOnly(target)’’
23 )

In this specification, the system will mark the parameter as read-only in lines 1-18, and so it will
disallow any method calls that are marked as not being read only, such as in lines 19-23. However,
writable methods could be called on other HttpServletRequest objects, if we had access to any.

These two sets of specifications show how to trade off generality with regard to the object and
to the operations. The first set limits a specific operation on all objects, while the second set limits
all modifying operations on a specific object. The second set is also more modular and modifiable:
if a developer adds new operations to HttpServletRequest, she does not need to be aware of all
the possible specifications that clients have already written regarding modifiability. Instead, she
can just make a constraint similar to lines 19-23 if the new operations is a modifying operation.

From this, we might presume the second set is clearly better to use: it’s more precise and more
modular. However, there is still an interesting argument for using the first specification: it is small,
easy to write and understand, and it will still likely capture most problems with few false posi-
tives. To even get a false positive, we would need access to a second object with the same type, and
that seems unlikely. Likewise, while it isn’t flexible to future changes to the HttpServletRequest
API, we can rightly question how likely it is for such changes to occur and affect this type of
program.

The second problem from the thread contains a similar tradeoff. Recall that the rule is that we
cannot insert the form backing object into the Map returned by referenceData. In particular, we
are not allowed to use the command that will be associated with this backing object as a key in
the Map. For this constraint, we will the FormCommand(Class, String, BaseCommandController)
relationship.6 This relationship associates a BaseCommandController with the command name
and the class of the backing object that was declared in the XML file; the XQuery to retrieve this
relationship is in Listing 6.13.

Our first attempt at this is simple: prevent all calls to Map.put when we are in referenceData
and the key matches the command name:

1 @Constraint(
2 op=‘‘Map.put(String str, Object obj) : Object’’,
3 trigger=‘‘FormCommand(clss, str, ctrlr) AND RefData(ctrlr)’’,
4 requires=‘‘FALSE’’
5 )

6As seen in Figure 6.1, BaseCommandController is a superclass of SimpleFormController that handles mapping a
form backing object to a command for the view to use.
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Listing 6.12: Callback specifications on all the versions of referenceData.
1 public class AbstractFormController extends BaseCommandController {
2 @Callback(‘‘RefData’’)
3 protected Map referenceData(HttpServletRequest request, Object command,
4 Errors errors) throws Exception {...}
5 ...

6 }

7

8 public class SimpleFormController extends AbstractFormController {
9 @Callback(‘‘RefData’’)

10 protected Map referenceData(HttpServletRequest request) throws Exception {...}
11 ...

12 }

13

14 public class AbstractWizardFormController extends AbstractFormController {
15 @Callback(‘‘RefData’’)
16 protected Map referenceData(HttpServletRequest req, int page) throws Exception {...}
17

18 @Callback(‘‘RefData’’)
19 protected Map referenceData(HttpServletRequest req, Object command,
20 Errors errors, int page) throws Exception {...}
21 ...

22 }

Listing 6.13: Retrieve the relationship FormCommand from a Spring XML file
1 declare namespace sf="http://www.springframework.org/schema/beans";
2 declare namespace fusion="http://code.google.com/p/fusion";
3 declare variable $doc as xs:string external;
4

5 for $bean in doc($doc)/sf:beans/sf:bean
6 let $cmdClass := $bean/sf:property[@name="commandClass"]
7 let $cmdName := $bean/sf:property[@name="commandName"]
8 let $beanType := data($bean/@class)
9 where fusion:isSubtype($beanType,"BaseCommandController") and not(empty($cmdClass))

10 return <Relationship name="FormCommand" effect="ADD">
11 <Object name ="{data($cmdClass/@value)}" type="java.lang.Class"/>

12 <Object name ="{data($cmdName/@value)}" type="java.lang.String"/>

13 <Object name ="{data($bean/@id)}" type="{$beanType}"/>

14 </Relationship>
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Listing 6.14: Specifications to precisely describe correct usage of the Map in referenceData.
1 @Constraint(
2 op=‘‘Map.put(Object key, Object value) : void’’,
3 effect={‘‘MapKey(target, key)’’}
4 )
5

6 @Constraint(
7 op=‘‘EOM: AbstractFormController.referenceData(..) : Map’’,
8 trigger=‘‘MapKey(result, str) AND FormCommand(clss, str, target)’’,
9 requires=‘‘FALSE’’

10 )

However, as before, this works in most cases but is slightly unsatisfactory, as it prevents this
operation on all maps, not just the map which is returned from the referenceDatamethod.

The problem can be fixed by tracking the keys that are put into a map (with the MapKey(Object,
Map) relationship) and then placing a constraint on the end of the referenceDatamethod that the
Map being returned does not contain the form command as a key. The specifications in Listing 6.14
do exactly this and allow the pragmatic analysis to find all of the erroneous plugins.

These specifications aren’t without problems. While they are correct with regard to allowing
and disallowing the right sets of plugins, the error produced is not in as useful of a location for
the plugin developer. While the first attempt gave an error at the line where the command name
was put into the Map, the second set delays the error until the return statement.

Both of these constraints show the tradeoff between creating a generic constraint that applies
to all objects and creating more specifications which are specific to the problem. Which is “better”
is dependent on several external factors, including the problem itself, the expected ways that a
plugin developer might break the constraint, and the time of the framework developer. Since
the Fusion language works with an abstract representation that is not directly tied to the heap, it
provides framework developers with the flexibility to choose their own level of abstraction based
upon their needs. In fact, the anticipated use of Fusion would be as a fire-fighting tool, where
specifications are only written or refined on an as needed-basis. When a developer discovers a
commonly broken constraint, she can create a small specification that will check most instances,
and if it becomes a further problem, she can refine it later.

6.5 Properties of adoption seen in the examples

Section 4.4 lists four properties of Fusion that make it a practical specification language. The case
study shows each of these properties actively making Fusion a useful language.

Minimize specification writing costs. All of the examples shown allow the system to minimize
specification costs. Each required very few specifications; the longest specification is in Listing
6.6 and is only 16 lines of actual specification. While the XQuery specifications are considerably
longer, this was due to the nature of XML and XQuery.
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Composability of constraints. The constraints shown are all composable; all of the specifications
shown can be used together without any conflicts.

Precision and cost-effectiveness. Most of the specifications shown are quite precise. Those that
are not, such as the examples in Section 6.4.4 were purposely made to be less precise as it increased
the overall cost-effectiveness of the specification without any differences on typical samples of
code.

Localized errors. Most of the specifications produce warnings that point directly to the faulty
expression in the code. Section 6.4.4 shows an example where the most precise specification did
not actually point to the faulty expression, but by removing a small amount of precision, the new
specification was able to provide a more localized warning to the developer.

6.6 Generalizable properties of Fusion

In this thesis, I’ve shown Fusion to be able to specify the collaboration constraints found within
the ASP.NET and Spring frameworks. While it is not possible to generalize from this to all frame-
works, the Spring case study did give a sense as to what parts of this system might generalize
easily to other frameworks, and what parts might not.

1. Relationships generalize. The relationship abstraction generalized well and did not change
throughout the case study. Its flexibility allowed it to be used to specify not only pure Java
examples, but also pure XML examples and mixed examples. The relationships themselves
can even cross the boundaries of frameworks; as seen above, we created the MapKey(Object,
Map) and ReadOnly(ServletRequest) relationships that are used by the Spring framework,
but they are really owned and created by the Collections framework and Servlet framework
respectively.

2. Constraints generalize. The form of writing the constraints with distinct predicates for the
trigger, requirement, restriction, and effect also generalizes well. While there are several
kinds of specifications in Fusion that are specific to common paradigms (like the callback
specification and the effect specifications), and we might make others to address common
paradigms of other frameworks, all of them can be rewritten into the general constraint form.

3. Operators do not generalize. When I started this research, the only operator allowed in the “op”
part of a constraint was a method call. This has expanded to cover constructors, beginning of
method tags, end of method tags, and even an operator for checking a constraint only after
the declarative files are processed. These were sufficient to cover the interaction paradigms
that Spring has with its plugins, but such paradigms might be different for other systems. As
seen in Table 6.2 field read and writes were also important for Spring, and one could imagine
scenarios where even locking on a particular object is part of a collaboration constraint.

4. Languages do not generalize. Even for very similar languages, such as Java and C# or XML
and ASPX, the language features that are used the most for framework interactions are the
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ones that are the most complex and the most distinctive to the specific language. To make
this system truly work for C#, I would need to add support for properties, delegates, and
partial classes, all of which play key roles in the ASP.NET framework. To completely work
for Spring, Table 6.2 showed that Fusion needed to support JSP, OGNL, reflection, and even
filesystem resources. While the declarative languages XML, ASPX, and JSP all have sim-
ilar syntax, their form is distinct enough that each would require their own language for
retrieving relationships.

While the Fusion language itself might not generalize beyond the common paradigms of Java
and XML-based frameworks, it seems reasonable that the abstractions that Fusion is based upon,
particularly the relationship and constraint abstractions, would generalize to other languages and
paradigms.



Chapter 7
Adoptability

In my thesis, I have set out to create an adoptable specification and analysis tool to describe collab-
oration constraints and statically detect violations of them. In previous chapters, I have shown the
functionality and scope of the system, but I did not discuss whether it was adoptable. That is, is
the Fusion tool reasonable to use in practice?

While the best way to answer such a question would be to deploy the tool to a wide variety of
industry projects, this is not feasible for an alpha-stage research project. Therefore, I have used the
research literature to create a list of properties that an adoptable specification and analysis system
must have. This list is by no means complete; it leaves out many properties such as a good user
interface and integration with existing tools. However, I can show that Fusion does have several
properties that are necessary, if not sufficient, for industrial adoption. In particular, this chapter
shows that Fusion reduces the specification burden of developers, is scalable through composable
analysis and specifications, is fast enough to run on millions of lines of code overnight, produces
precise enough results for industrial use, and provides usable error reports for developers.

In this chapter, I present a second case study done with Pradel, Aldrich, and Gross [90]. In
this case study, we combined Pradel and Gross’s specification miner [89] and Fusion to analyze
the DaCapo benchmarks, a well-studied suite of program analysis benchmarks [17], to check col-
laboration constraints from the Java Standard Libraries. This case study highlights the properties
listed above and provides evidence that Fusion contains these properties.

7.1 Reducing specification burden

One of the most important properties of an adoptable specification language is to reduce the cost
of writing specifications without sacrificing expressive power. Many commercial tools go as far as
having no specifications at all, including Klocwork [65], Fortify [40], Findbugs [34], and Coverity
[25]. Other tools, like JSure [73] and Spec# [92], reduce the specification burden by making lan-
guages that are highly modular so that the developers can specify as little or as much of the system
as they like, thus allowing them to make their own cost-benefit tradeoff. Fusion also works on this
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model by allowing developers to specify each constraint independently without specifying the
entire framework.

Even writing a few specifications can be costly, as developers must learn a new specification
language. To further reduce the specification burden, some tools have begun inferring specifica-
tions through analysis. Inference is well-known within the type systems community, and entire
languages, such as ML, are built with type inference in mind. Even popular industry languages,
such as C#, have incorporated local type inference to reduce the burden of writing down type
specifications [79].

While static inference can reduce type specifications, dynamic inference has been shown to
capture more complex specifications. Both the Daikon research tool [46] and the commercial tool
TestOne [5] use dynamic analysis to infer the pre- and post-conditions of methods. More recently,
dynamic analysis has been used to infer multi-object protocols [70, 72, 89] similar to those de-
scribed by Fusion. In our recent study we utilized these dynamically inferred protocols as spec-
ifications of collaboration constraints and used them to check programs without any developer
intervention.

Our combined system and an evaluation of it is written up fully in [90], but I provide a brief
high-level description here. We ran the specification miner described in [89] on several samples
runs of production-quality code. From these runs, the specification miner produces state machines
based upon the calls it sees; a sample state machine from the Iterator protocol is shown in Figure
7.1. We translated each of these protocols into a Fusion specification. The actual translation is
written up in [90] and is not necessary for this discussion. However, it is important to know
that in order to retain precision, we created what we termed the “triple bookkeeping” system:
we effectively translated the state machine in three ways. For each state machine, we created
relationships from the states themselves, the operations used to transition, and the associations
between each pair of objects in the protocol. This allows the analysis to regain precision from the
other two sets of relationships even when one set loses precision.

The triple bookkeeping of the state machine creates some very complex constraint specifica-
tions. The protocol of Figure 7.1 is translated into 13 constraints, as shown in Listing 7.1, which
utilizes 8 relationships. By contrast, the same protocol, specified by hand, only uses 3 constraints
and 2 relationships, as shown in Listing 7.2. When specified by hand, the developer can take ad-
vantage of his global abstractions of the protocol, rather than doing more local transformations.
In fact, Listing 7.2 is not only more concise, but also more precise as the protocol miner in [89]
does not take advantage of the return values from methods (like Iterator.hasNext()). While the
inferred constraints are far more complex, they took no intervention from the developer beyond
running the specification miner on sample programs.

7.2 Scalability and Performance

Scalability is another important property of an adoptable program analysis. In [13], the Coverity
team explains that in order for their tool to be marketable to companies, they have to be able to run
their analysis tool in an overnight build of 12 hours. Based on their experience, an analysis tool
needs to process 1400 LOC a minute, which comes to about 1 MLOC an hour. In extreme cases,
such as where they are running on over 10 MLOC, they can get away with a 24 hour analysis time.
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Listing 7.1: Automatically generated specifications for the state machine shown in Figure 7.1.
While these specifications appear to be unnecessarily repetitive, the repetition is necessary for
more complex inferred protocols.

1 Constraint(op =‘‘Iterator.remove() : void’’,
2 trg =‘‘(fsm162(target))’’,
3 req = ‘‘TRUE AND remove(target)’’)
4 Constraint(op =‘‘Iterator.remove() : void’’,
5 trg =‘‘(fsm162(target)) AND (s1(target))’’,
6 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘s0(target)’’, ‘‘!next(target)’’, ‘‘fsm162(target)’’,
7 ‘‘!s3(target)’’, ‘‘!remove(target)’’})
8 Constraint(op =‘‘Iterator.remove() : void’’,
9 trg =‘‘(fsm162(target))’’,

10 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘s0(target)’’, ‘‘!next(target)’’, ‘‘fsm162(target)’’,
11 ‘‘!s3(target)’’, ‘‘!remove(target)’’})
12 Constraint(op =‘‘Iterator.next() : Object’’,
13 trg =‘‘(fsm162(target))’’,
14 req = ‘‘TRUE AND next(target)’’)
15 Constraint(op =‘‘Iterator.next() : Object’’,
16 eff = {‘‘hasNext(target)’’, ‘‘remove(target)’’, ‘‘!next(target)’’, ‘‘fsm162(target)’’, ‘‘!s3(target)’’,
17 ‘‘s1(target)’’, ‘‘!s0(target)’’})
18 Constraint(op =‘‘Iterator.next() : Object’’,
19 trg =‘‘(fsm162(target)) AND (s3(target))’’,
20 eff = {‘‘hasNext(target)’’, ‘‘remove(target)’’, ‘‘!next(target)’’, ‘‘fsm162(target)’’, ‘‘!s3(target)’’,
21 ‘‘s1(target)’’, ‘‘!s0(target)’’})
22 Constraint(
23 op =‘‘Iterator.next() : Object’’,
24 trg =‘‘(fsm162(target))’’,
25 eff = {‘‘hasNext(target)’’, ‘‘remove(target)’’, ‘‘!next(target)’’, ‘‘fsm162(target)’’, ‘‘!s3(target)’’,
26 ‘‘s1(target)’’, ‘‘!s0(target)’’})
27 Constraint(op =‘‘Iterator.hasNext() : boolean’’,
28 trg =‘‘(fsm162(target))’’,
29 req = ‘‘TRUE AND hasNext(target)’’)
30 Constraint(op =‘‘Iterator.hasNext() : boolean’’,
31 trg =‘‘(s0(target)) AND (fsm162(target))’’,
32 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘next(target)’’, ‘‘s3(target)’’, ‘‘fsm162(target)’’,
33 ‘‘!remove(target)’’, ‘‘!s0(target)’’})
34 Constraint(op =‘‘Iterator.hasNext() : boolean’’,
35 trg =‘‘(fsm162(target)) AND (s1(target))’’,
36 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘next(target)’’, ‘‘s3(target)’’, ‘‘fsm162(target)’’,
37 ‘‘!remove(target)’’, ‘‘!s0(target)’’})
38 Constraint(op =‘‘Iterator.hasNext() : boolean’’,
39 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘next(target)’’, ‘‘s3(target)’’, ‘‘fsm162(target)’’,
40 ‘‘!remove(target)’’, ‘‘!s0(target)’’})
41 Constraint(op =‘‘Iterator.hasNext() : boolean’’,
42 trg =‘‘(fsm162(target)) AND (s3(target))’’,
43 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘next(target)’’, ‘‘s3(target)’’, ‘‘fsm162(target)’’,
44 ‘‘!remove(target)’’, ‘‘!s0(target)’’})
45 Constraint(op =‘‘Iterator.hasNext() : boolean’’,
46 trg =‘‘(fsm162(target))’’,
47 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘next(target)’’, ‘‘s3(target)’’, ‘‘fsm162(target)’’,
48 ‘‘!remove(target)’’, ‘‘!s0(target)’’})
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Iterator.hasNext()
Iterator.hasNext()

Iterator.next()

Iterator.remove()

Iterator.hasNext()
Iterator.hasNext()

Iterator.next()

Figure 7.1: An inferred state machine on the Iterator protocol. As this protocol is inferred, the
states are unlabeled.

Listing 7.2: Manually written specifications for the state machine shown in Figure 7.1.
1 Constraint(
2 op =‘‘Iterator.hasNext() : boolean’’,
3 eff = {‘‘?HasNext(target) : result’’})
4 Constraint(
5 op =‘‘Iterator.next() : Object’’,
6 req =‘‘HasNext(target)’’,
7 eff = {‘‘!HasNext(target)’’, ‘‘Removable(target)’’,})
8 Constraint(
9 op =‘‘Iterator.remove() : void’’,

10 trg =‘‘Removable(target)’’,
11 eff = {‘‘!Removable(target)’’})

To truly evaluate scalability, I would need to show the run times for samples of different sizes
of programs with different numbers of specifications. However, for reasons of scoping the thesis
to a manageable level, I will not be doing that here. Instead, I demonstrate that Fusion can achieve
the high bar set by Coverity with regards to performance and I identify the aspects that lead to
scalability and performance concerns within Fusion.1

Once we had the 223 inferred constraint specifications from the dynamic miner, we ran Fusion
with the specifications on the entire DaCapo benchmark. The DaCapo benchmark is a 1.5 MLOC
benchmark of production code used for program analysis [17] and provides a useful measure for
how well our system works. While primarily used by dynamic analysis tools, it has recently been
used by static tools as well, including some related work [19, 23, 43, 82]. The size of each program
within the benchmark is shown in Table 7.1. Fusion ran overnight on this benchmark on an Intel
machine with a 3.0 GHz quad-core processor and 8GB of RAM. While not running at speeds of
1MLOC per hour, we made few optimizations and it ran overnight easily.

1Obviously, the unsubstantiated claims made by a company of their tool are somewhat suspect. However, it pro-
vides a good point of comparison, especially given that Fusion is a research prototype.
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Program Description LOC
avrora Analysis of microcontrollers 69,393
batik SVG toolkit 186,460
daytrader Application server benchmark 12,325
eclipse Software development platform 289,641
fop Output-independent print formatter 102,909
h2 SQL relational database 120,821
jython Python interpreter 245,016
lucene Text indexing tool 124,105
pmd Source code analyzer 60,062
sunflow Photo-realistic rendering system 21,970
tomcat Servlet container 161,131
xalan XML processing 172,300
Sum 1,566,133

Table 7.1: DaCapo programs used for the evaluation of the inferred specifications. Table from
[90].

Simply running an intra-procedural analysis on 1.5 MLOC is fairly trivial though. In practice,
I found that three aspects beyond the lines of code significantly contributed to the performance of
Fusion: the number and complexity of the specifications, the number of times the specified API
was used, and the number of options produced by the points-to analysis. The complexity of the
specifications affect performance because there are simply more relationship effects to make and
to keep track of. The frequency of use of an API affected how often an instruction in the program
matched an operation in the specifications; in our case study, this happened 606,706 times. Not
all of these matches resulted in an error, or even a triggered constraint, but each match takes time
because we have to check the constraint to see if it is triggered.

The points-to analysis was a surprisingly large factor for scalability and performance. In most
cases when a constraint was triggered, there would be only a few substitutions σ produced by the
points-to analysis, as described in Chapter 5. However, certain methods would produce thou-
sands of substitutions; this frequently occurred in methods with many string concatenations.
String concatenations produce temporary strings as a result, so it was not unusual for a single
method to have 15-20 potential labels for Strings. As any of these could be aliased, there is a
huge explosion in the number of possible substitutions. Code with string concatenations would
not be a problem normally, but we had several protocols about the StringBuffer API, so these
constraints matched instructions frequently. The sheer number of substitutions took surprisingly
long to check, and in tests, a single method like this would take hours to analyze. To prevent this
from occurring, we stopped analyzing a method if a constraint ever matched with over 100 sub-
stitutions or if it takes longer than 30 seconds of analysis time. In practice, this occurs in less than
1% of methods, so we determined this to be a good tradeoff between precision and performance.
Coverity uses similar techniques in order to keep the analysis time within an overnight run [13].
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7.3 Precision

For a static analysis tool to be adopted by industry, its results must be precise enough to be cost
effective. Both false negatives and false positives decrease the value of a tool, and successful
industrial tools provide a good balance between these. Each false negative from a tool decreases
its potential value, and the total cost of using the tool, including purchase cost and setup costs,
must be correspondingly lower. False positives also decrease value, though in a very different
way. Each false positive costs (expensive) developer time to investigate. Worse yet, if there are
many false positives, developers will be unable to find the true positives and will stop using
the tool altogether. For this reason, sound analyses have had little headway in industrial use.
Even unsound analysis tools must be mindful of this; in [13], the Coverity team explained their
experiences with false positives:

False positives do matter. In our experience, more than 30% easily causes problems. People
ignore the tool. True bugs get lost in the false. A vicious cycle starts where low trust causes
complex bugs to be labeled false positives, leading to yet lower trust....We aim for below 20%
for “stable” checkers. When forced to choose between more bugs or fewer false positives we
typically choose the later.

In Chapters 4 and 5, the pragmatic variant worked very well; in fact, it was perfectly precise.
However, this was on very limited examples. Each example program was relatively small and
was generated from snippets of code from internet help forums. In earlier chapters, I noticed that,
in addition to the variant, there were two other factors that impact precision: the precision of the
points-to analysis and the precision of the specifications. While neither was a serious issue in the
Spring case study, the DaCapo case study thoroughly tested both of these factors.

The DaCapo benchmarks are all large, open source programs that are currently in production.
As we expect to see relatively few bugs in previously-tested production code, we also expect our
false positive rate to be high. Additionally, this code has much more complex aliasing patterns,
and without any aliasing control specifications, like fractional permissions [20] or ownership types
[24], it is going to be very difficult for a points-to analysis to produce precise results. Therefore,
we must expect Fusion to perform worse accordingly.

The specifications used in this case study are also not very precise. As the 223 protocols are
dynamically inferred, they can only capture the parts of the protocol that the training runs actually
used. To make matters worse, the translation from these protocols into specifications are not as
precise as human specifications, and the inferred protocols do not capture value-based informa-
tion, like whether the return value from hasNext is true or false. To remove the worst offenders,
we employed an automatic filtering system, described in [90] to prune out any protocols with
signs of being an imprecise protocol. For example, one pruning mechanism was to remove pro-
tocols that were not seen at least a certain number of times in the training programs. Pruning
out protocols removed large numbers of warnings; the complete analysis reported 993 warnings
before pruning, but only 81 after pruning.

Even with complex aliasing patterns and imprecise specs, the analysis performed reasonably.
While the pragmatic analysis did not fare well, the complete analysis had a false positive rate of
49% and found 41 real issues in the DaCapo program, including 26 defects and 15 code smells.
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Kind of Issue Number
Total 81
False Positive 40

Incomplete Protocol 30
Imprecise aliasing 2
Extended, specialized protocols 8

True Positive 41
Bug 26
Code smell 15

Table 7.2: Results from running inferred specifications on the DaCapo programs using the com-
plete analysis and after automatically pruning bad protocols. In addition to incomplete protocols
and imprecise aliasing, eight false positives were from programs that extended existing protocols
with their own specialized semantics.

Listing 7.3: Bug found by the iterator specifications in Listing 7.1.
1 Map comparators = ...

2 Iterator i = comparators.values().iterator();

3 for (Comparator c = (Comparator) i.next(); c != null; c = (Comparator) i.next()) {
4 ...

5 }

Table 7.2 shows a breakdown of the results. Most of the false positives were from incomplete
protocols, that is, imprecise specifications. There were only two false positives from imprecisions
in the points-to analysis.2 Overall, while it does not achieve the 30% marker given by Coverity,
the analysis performed well in a very difficult environment and might do considerably better in
other environments.

Most of the defects found were from only a few very commonly used protocols. Listing 7.3
gives an example of a defect found on the Iterator protocol; this was found using the constraint
specifications from Listing 7.1. In this listing, the code assumes that a call to next will return null
if there is no next operator, which is incorrect according to the specification of Iterator [112]. The
analysis also found several issues that we classified as a code smell. These issues were a fault in
the code that would not cause an error, but make the code less readable. Listing 7.4 shows code
that closes a stream twice; while not technically an error, this is unnecessary.

7.4 Usable error reports

The final property to discuss is the ability for the analysis to produce understandable error mes-
sages. In the article on their experiences at Coverity, the team mentioned the need for understand-

2Given that these results are for the complete variant, which uses the must-like analysis, there are probably many
false negatives from this. The only way to evaluate how many would be to analyze the results of the sound variant to
find them all.
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Listing 7.4: Code smell found by inferred specifications
1 BufferedReader in = null;
2 try {
3 in = new BufferedReader(...);
4 ...

5 in.close();

6 }

7 finally {
8 if (in != null) {
9 try {in.close();}

10 catch (IOException e) { ... }
11 }

12 }

able error messages several times and seemed to think this was their biggest technical hurdle:

Further, explaining errors is often more difficult than finding them. A misunderstood explana-
tion means the error is ignored or, worse, transmuted into a false positive.

That is, even a tool that produces very few false positives may have a high “false positive” rate in
practice if the error messages themselves are not understandable. This has become so important
to them that they “have completely abandoned some analyses that might generate difficult-to-
understand reports” [13]. The problem is not uncommon; the FindBugs team has a website that
describes every defect, with examples for some, so that people will not mistakenly mark warnings
as false positives [35]. In all the industry tools I have used, the error messages are pre-defined and
it is easy to access examples and further discussion of the error. This is practical for most tools to
do as the checkers are all provided by the tool company; end-users never or rarely write their own
specifications and never use specification languages as complex as Fusion.

While I could depend on the framework developer to write her own error message for each
constraint specification, it seems unlikely that she would do so and more likely that this would
just be a hinderance to adoption. On the other hand, just showing the failing constraint to the
user as a logical predicate is insufficient for explaining the error. This would require the plugin
developer, who already is unsure of the problem, to understand a new specification language and
understand the abstractions that the framework developer chose to use.

As a step toward fixing this situation, I created error reporting logic (ERL) to automatically
generate human-readable error messages from failing first-order logic propositions [59]. The
premise of ERL is to find the sub-parts of the proposition that contribute to the failure and must
be fixed. ERL breaks apart these contributing pieces so that each error message represents a single
action that a developer must take to resolve the error. Therefore, a failing conjunction where both
sides are failing results in two error messages, as there are two distinct tasks. On the other hand,
a failing disjunction where both sides are failing results in a single error messages that allows the
user to select between two tasks. A conjunction with only one side failing will only show one error
message, as the system only shows the sub-parts that need to be changed rather than the entire
failing proposition.
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In [59], we evaluated ERL on AcmeStudio which, like Fusion, uses first-order predicate logic
specifications that may not have a human-readable error message [4]. Our qualitative analysis
suggested that the more focused error messages helped developers to find and fix their errors.
ERL is currently being added to Fusion, and I expect the benefits to Fusion will be similar to the
benefits found with AcmeStudio. While this is still not as good as a detailed English description
with examples, this is a major improvement that could be added to other logical specification
systems as well, including [15, 69].

7.5 Future work for adoptability

In addition to improving further on the above properties, there are several other steps needed to
truly make Fusion adoptable by industry.

1. Visualizations of the relationships and the aliasing patterns at each line of code would make
it much easier to determine whether a warning was a true positive or false positive, or even
whether the specification itself is incorrect. While we do not have such a visualization now,
we do have a textual output that shows the lattices at a highlighted line, and I have found
this to be extremely helpful when trying to understand the cause of the error in complex
code from DaCapo.

2. Adjustments to inferred constraints, done by the plugin developer on the fly, would make
inferred protocols much more tractable. While dynamic inference creates mostly correct
protocols, there were several cases where the protocol was just slightly off and causing false
positives. The ability for the plugin developer to change this on the fly, perhaps through a
visualization or perhaps automatically by marking false positives, would greatly improve
the results.

3. Suggestions to fix the errors would improve the error messages. Even with ERL, the error
messages reference relationships, which are a framework developer’s abstraction of their
API. It would be much better if the plugin developer received suggestions for how to fix the
problem in terms of their own code, rather than in terms of a foreign abstraction.

4. Support for file resources would greatly increase the scope of defects Fusion can find. The
Coverity team has a law: “You can’t check what you can’t see”. [13] Right now, many im-
portant files are effectively invisible to Fusion, and most other analysis tools, because they
are accessed through dynamically created filepaths that a static analysis tool can’t yet follow.
This will enable many other kinds of checking, including checking JSP files for compatibility
with associated Java and XML files in Spring.

I expect that a tool like Fusion would be primarily used by industry professionals to specify
their frameworks and assist plugin developers with finding problems. In particular, I anticipate
that framework developers would adopt this tool incrementally by adding relationship specifica-
tions on an on-demand basis; when a plugin developer asks about a constraint on the forum or
mailing list, the framework developers can answer the question and then add specifications for
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that constraint in the next release. After the next release, plugin developers would be able to run
the analysis to detect violations of these constraints without any assistance from other developers.

Many large frameworks, such as Spring and ASP.NET, have generated third-party service
companies that sell developer tools and consulting services. I expect these companies would be
attracted to this work as a means of increasing business; these service companies could sell spec-
ification sets and tools. As the number of constraints in a particular framework increase, I would
also expect framework vendors and service companies to build more tools that take advantage of
these specifications. For example, a tool that visually describes the constraints would be a useful
form of documentation, as would a tool that suggests operations based on the constraints that
need to be satisfied.



Chapter 8
Related Work

This chapter describes several areas of related work. The first two sections describe other work
designed for helping plugin developers understand software frameworks, either through tutorial-
based assistance or through formal specifications. The next section describes how the analysis
itself is very similar to many existing shape analyses and can even be encoded within some well-
known analysis frameworks. The fourth section describes other research areas in protocol verifi-
cation, such as typestate, tracematches, and session types. In each of these areas, there has been at
least one system that also provides support for multi-object protocols. Finally, the last section dis-
cusses work that, while not related technically, provided inspiration for the goals and philosophy
of Fusion.

8.1 Tutorial-based framework assistance

Most of the work on improving the usability of software frameworks has been through either
documentation of the framework design or through tutorial assistance. Johnson’s early work on
software frameworks described them as compositions of design patterns [60, 61]. This was fol-
lowed by research that aimed to formalize and extract these design patterns [38, 52, 106]. How-
ever, design patterns alone have been insufficient for specifying frameworks. While they provide
information at a high level of abstraction, they become unwieldy when used to describe lower-
level constraints. The problem is that the abstraction level is too high, and they cannot handle all
the points of variation without the ability to specify each one. If all these points are specified, the
tutorial becomes so large that it is impractical as a starting point. Additionally, as the goal of most
frameworks is to allow fairly open-ended extension, it might not even be possible to specify all
the variations.

More recent work on frameworks helps developers by documenting tutorial-like use cases [33,
42, 74, 93]. These use cases are more flexible than the original pattern-based work as they do not
attempt to describe frameworks using external patterns; rather, they work within the abstractions
of the framework. This allows them to describe the specific steps that the plugin developer must
take to achieve some task. While this work can help a plugin developer find the right API and
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get started using it, it does not help a plugin developer expand beyond the tutorial. This body of
work is complementary to the work in this thesis. The tutorial style helps a developer get started
on a good path, and tools like Fusion can ensure that as developers stay away from bad paths as
they expand their applications.

8.2 Formal specifications of frameworks

SCL [55] allows framework developers to create a specification for the structural constraints for
using the framework. Unlike Fusion, it does not handle the semantic aspects of the protocol,
including object identity or values.

Like Fusion, Contracts [51] also specify systems by specifying the associations among objects.
A contract declares the objects involved in the contract, an invariant, and a lifetime where the
invariant is guaranteed to hold. Contracts allow all the power of first-order predicate logic and
can express very complex invariants. Contracts differ from Fusion because they do not check the
conformance of plugins and the specifications are more complex to write due to their higher level
of expressive power.

Others have noted the importance of handling inheritance for code reuse purposes. Dhara
and Leavens noted the problem in [30] and relaxed the constraints in JML to better handle this
problem. Parkinson and Bierman introduced a verification technique based on separation logic
that handle subclasses that break behavioral subtyping [86]. Parkinson and Bierman’s approach
is particularly interesting because they were able to handle broken behavioral subtyping and did
so in a modular analysis. Fusion does not do this and assumes global knowledge of constraints;
however, Fusion must have global knowledge anyway in order to handle constraints which are
not class invariants.

Relationships are not a new construct to specification languages. Bierman and Wren formal-
ized UML relationships as a first-class language construct [16]. The language extension they cre-
ated gives relationships attributes and inheritance, and developers use the relationships by ex-
plicitly adding and removing them. Balzer et. al. expanded on this work by describing invariants
on relations using discrete mathematics; this allows their work to support semantic invariants and
invariants among several relations [9]. In contrast to previous work, the relationships presented in
this paper are added and removed implicitly through use of framework operations, and if inferred
relationships are used, they may be entirely hidden from the developer.

This work also has some overlap with other formal methods, particularly in describing the
relationships and invariants of code [37, 69]. These formal methods verify that the specified code
is correct with respect to the specification; this is also called “implementation-side verification”.
Instead, we are checking the unspecified plugin code against the framework’s specification; this
is known as “client-side verification”. Other formal methods [57, 107] focus on a detailed descrip-
tion of the entire system. These systems also allow developers to model the invariants among
objects. However, the checkers for these systems are meant to stand on their own, without any
ties to executable code. The closest work in formal methods is [7], as it also allows for framework
developers to define their own constraints. All of these checkers expect to verify invariants of the
system that are true throughout the lifetime of the application. Instead, Fusion checks constraints



8.3. LOGICAL ANALYSES 115

that only hold true for specific contexts, and it takes into account that the relationships among
objects might change over time.

Many verification and typechecking systems [3, 18, 22, 36, 75] have proposed doing a static
analysis to verify as much of the system as possible, and then using a dynamic analysis for un-
verifiable program points. Fusion could be easily modified to also take this approach; any issue
found by the sound variant, but not by the complete variant, would require instrumentation for a
runtime check.

8.3 Logical analyses

The Fusion analysis is similar to a shape analysis [96], with the closest being TVLA (Three Value
Logic Analysis) [97]. Shape analyses attempt to determine the structure of the heap at runtime
and how objects point to each other through field references. While Fusion explicitly does not
model pointers and field references, the manner by which it connects object using relationships
is similar. TVLA allows developers to extend shape analysis using custom predicates that relate
different objects, and it represents these predicates in three-value logic, similar to Fusion. Fusion
constraints could be written as custom TVLA predicates, but the lower level of abstraction would
result in a more complex specification and would require greater expertise from the specifier.

While the mechanism to infer relationships is clearly a Prolog engine, the main analysis can
also be modeled as a logic program. In fact, I did model the DropDownList example constraint
in Datalog, in hopes of feeding it into BDDBDDB and taking advantage of the pointer analysis
described in [124]. I found it to be troublesome to model data-flow as it is not built in and must
be modeled at a low level. Additionally, I needed higher-order functions to make the technique
practical for framework developers to write the specifications, and Datalog does not currently
support this.

8.4 Typestates, Tracematches, and Session types

The most related work to Fusion are typestates, tracematches, and session types, all of which seek
to describe object protocols. None of the work described here can handle declarative artifacts,
though a few can specify semantic aspects of constraints, extrinsic constraints, and/or multi-object
constraints, with some limitations. Table 8.1 shows how these four areas are related and the differ-
ent properties of each. I first describe how each research area is related to relationship constraints,
and I come back to the comparison in Table 8.1 at the end of the chapter.

Typestates [29] provide a mechanism for specifying a protocol on a single object by using a
state machine. There have been several approaches to inter-object typestate. Kuncak et al. manip-
ulated the typestate of many objects together through their participation in data structures [67].
Nanda et al. take this a step further by allowing external objects to affect a particular object’s state,
but unlike relationships, it requires that the objects reference each other through a pre-defined
path [83]. Bierhoff and Aldrich add permissions to typestates and allows objects to capture the
permission of another object, thus binding the objects as needed for the protocol [15]. Relation-
ships can combine multiple objects into a single state-like construct and is more general for this
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Table 8.1: Comparison of closely related work. These four areas are likely isomophic solutions
with different design choices in the solution space. That is, in theory, they might be able to
specify the same classes of constraints when extended with appropriate feature sets. The cited
works are only those which handle multiple objects in some way; there are many more papers
in each of these areas.

Specified a valid protocol Specifies erroneous paths of the protocol
State-based Typestate [15, 67, 83] Relationship constraints [58]
Operation-based Session Types [54] Tracematches [82]

purpose than typestate; it can describe all of the examples used in multiple object typestate work.
However, Fusion does not contain a built-in aliasing system, and therefore it may be less precise
if there is significant aliasing.

With respect to the specifications, relationships are more incremental than typestate because
the entire protocol does not need to be specified in order to specify a single constraint. Addition-
ally, the plugin developer does not add any specifications, which she must do with some of the
typestate approaches. However, typestate analyses aim to be sound, and can also check that both
the plugin and the framework meet the specification. The relationship analysis assumes that the
framework properly meets the specification and only analyzes the plugin.

Tracematches have also been used to enforce protocols [122]. Unlike typestate, which specifies
the correct protocol, tracematches specify a temporal sequence of events that lead to an error state.
This is actually more similar to how Fusion specifies constraints. In tracematches, this is done by
defining a state machine for the protocol and then specifying the bad paths.

The tracematch specification approach is similar to that of relationships; the main difference is
in how the techniques specify the path leading up to the error state. Tracematches must specify
the entire good path leading up to the error state, which leads to many specifications to define a
single bad error state. In cases where multiple execution traces lead to the same error, such as the
many ways to find an item in a DropDownList and select it incorrectly, a tracematch would have
to specify each possibility, as seen in Listing 8.1. Instead, Fusion allows us to specify a relationship
predicate that triggers the check, and we separately write specifications on the good paths leading
up to the check to produce the relationships necessary for the trigger. This difference affects how
robust a specification is in the face of API changes. If the framework developer adds a new way
to access ListItems in a ListControl, possibly through several methods calls, the existing trace-
matches will not cover that new sub-path. However, all the constraint specifications in Fusion will
continue to work if the sub-path eventually results in the same relationships as other sub-paths.

Unlike relationships, tracematches are enforced both dynamically and statically using a global
analysis [18]. The static analysis soundly determines possible violations, and it instruments the
code to check them dynamically. Bodden et al. provide a static analysis which optimizes the
dynamic analysis by verifying more errors statically [19], and Naeem and Lhoták specifically op-
timize with regard to tracematches that involve multiple objects [82] . While this work handles
multiple objects and object identity, it cannot currently handle value-based constraints. In partic-
ular, tracematches can be used to determine that a call to hasNext appeared before a call to next,
but cannot check whether the call returned true.
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Listing 8.1: The tracematch to specify the DropDownList selection protocol from Vignette 3.1.
1 tracematch(DropDownList ddl, ListItemCollection coll, ListItem newSel, ListItem oldSel) {

2 sym getCurrent after returning(oldSel):

3 call(* DropDownList+.getSelectedItem()) && target(ddl)

4 sym deselect after:

5 call(* ListItem+.setSelected(boolean select)) && target(oldSel) && select == false
6 sym getList after returning(coll):

7 call(* DropDownList+.getItems()) && target(ddl)

8 sym getItem after returning(newSel):

9 (call(* ListItemCollection+.findByValue(...)) ||

10 call(* ListItemCollection+.findByName(...))) && target(coll)

11 sym select after:

12 call(* ListItem+.setSelected(boolean select)) && target(newSel) && select == true
13

14 getList getItem select (getCurrent deslect+)+ |

15 getCurrent getList getItem select deselect+ |

16 getList getCurrent getItem select deselect+ |

17 getList getItem getCurrent select deselect+

18 {

19 throw new RuntimeException("Need to deselect the existing object before selecting");
20 }

21 }

As seen, typestate and tracematches are state-machine based approaches, but this approach
generally breaks down in the presence of multiple objects. The core of the problem is that all
objects much be accessible to start up the state machine, and in many of the multiple-object con-
straints, only a couple objects exist at a time. The typestate approach given by Bierhoff [14] attacks
this issue by using a permission capture to hold onto the object permissions for later use in the
protocol, while the tracematch approach must specify all possible paths up to the point where the
first object was bound [81]. Fusion avoids this by abstracting away the earlier binding of objects
into relationships and then composing relationships together into logical predicates.

Session types [53] were originally created to describe the protocol between two processes. They
were later extended to allow for multi-party sessions [54]. Like typestate, session types describe
the protocol to follow, instead of the bad paths. However, like Fusion and tracematches, session
types describe the specification globally; this allows them to easily handle extrinsic constraints.
After the protocol is specified as a session, each participant is verified against the protocol.

It’s important to note that the “party” abstraction used in multi-party session types does not
entirely map to objects in a multi-object protocol. A party is a process, or perhaps, a component.
Therefore, in a situation where a plugin interacts with the framework through four objects, as
in the DropDownList problem from Vignette 3.1, there are only two parties: the framework, and
the plugin. However, it seems this is an arbitrary division; we could just as easily divide the
framework into its component parts and call this a five-party protocol (the 4 objects, plus the
plugin that is calling them).

As described, type systems, trace matches, and state machines are all related to relationship
constraints and to each other. Table 8.1 shows two axes where these areas have fundamentally
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different design choices to specify the same kinds of protocols. While I and others hypothesize
that these areas are isomorphic, the design choices affect the ease of specifying different types of
protocols.

The first axis describes whether the language specifies the valid parts of the protocol or the
erroneous parts. Both typestate and session types specify the correct way for objects to interact,
and any deviation from the specified protocol is an error. On the other hand, tracematches and
relationship constraints specify the bad usages that can cause an error, and all usages otherwise
are deemed acceptable. The choice of which is “better” is dependent on whether the protocol in
question has more good paths or more error paths.

The second axis describes the primary abstraction that the system specifies. Typestates and
relationship constraints use a state-based approach where the specifications are on a state-like
abstraction. On the other hand, tracematches and session types use operation-based specifications;
they specify the path of interest in a regex-like syntax on the operations. Again, which choice is
“better” is dependent on the protocols. If we expect protocols where operations and states have
a near 1:1 relationship (like a File protocol), an operation-based approach is a clean abstraction.
However, if several operations transition to the same state, or if a single operation transitions to
different states depending on the current state, a state-based abstraction is cleaner, as seen with
the example from Listing 8.1.

The Fusion system is unique from the related specification and verification systems in several
ways. First, it completes the design space in Table 8.1 by providing a state-based specification
for erroneous protocols. Second, it is the first system shown to be able to specify and analyze
constraints that span both code files and declarative artifacts. Finally, it is the only system that
provides not just a sound analysis, but also a complete variant and a pragmatic variant in order to
provide more cost-effective results.

8.5 Philosophically Influential Systems

One of the primary goals of this work is to provide a specification language and static analysis that
is cost-effective and adoptable for industry use. I have been influenced by many of the lightweight
specification systems that have been show to be useful for industry practice by limiting the amount
of specifications and the type of errors that the system can detect. Examples range from FindBugs
[34], which can be used with little to no specifications, to Fluid [39], which uses limited specifica-
tions to catch very deep design errors. Other examples include Coverity [25], PREfast/SAL [68],
and Spec# [92]. Each of these tools has become successful by limiting the scope of faults that they
can find and creating a specification language designed specifically for that category of faults.



Chapter 9
Conclusion

In this dissertation, I made the following thesis statement:

Collaboration constraints are inherent to the design of software frameworks but are burdensome
for plugin developers. These constraints can be defined by specifications that describe the re-
lationships among objects and how relationships change, and an adoptable static analysis can
check that code conforms to the specified constraints.

This thesis presents both a new problem, previously undiscussed in the research literature, and a
solution that builds upon prior protocol work to address this problem. This dissertation makes
three primary contributions, as originally described in Chapter 1.

9.1 Contribution 1: Collaboration Constraints

This dissertation shows that collaboration constraints arise out of the inherent tradeoffs of reusable compo-
nent design and that collaboration constraints are burdensome for developers.

This dissertation first argues that collaboration constraints arise out of the inherent tradeoffs
of reusable component design. Section 2.2 analyzes the inherent tradeoffs of reusable components
and showed that these components have competing tradeoffs for utility, versatility, and usabil-
ity. This section argues that collaboration constraints occur in components that choose to be both
highly versatile and provide high utility. Software frameworks, as defined in Section 2.1, are ex-
amples of such components as they seek to be used by a wide variety of programs while providing
high utility in the form architectural reuse.

Given that collaboration constraints are difficult to design away without losing either versa-
tility or utility, the dissertation provides a means for better understanding these constraints and
their properties. Chapter 3 uses an empirical analysis of developer forums to provide evidence
that collaboration constraints are burdensome for developers. The primary assumption of this
study is that developers will not post on these forums until they have exhausted all other forms of
assistance. The quantitative data supports this, as developers had to wait hours and days before
getting a response, if one came at all. The data also shows that the resulting runtime errors had
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properties that make them difficult to debug, such as non-local faults and unexpected runtime
behavior. The qualitative data shows developer’s frustration with trying to solve these problems
and their sincere gratitude when someone provided a clear explanation and solution.

From the data gathered in the empirical study of developer forums, Section 3.3 identifies sev-
eral common properties of the constraints which any solution must be able to handle. While these
properties are neither a closed or identifying set, they are all properties that are both difficult to
specify, even informally, and which partially contribute to the burdensome nature of collabora-
tion constraints. First, collaboration constraints, by definition, are a constraint across more than
one object, but they are also frequently across types as well. This makes it difficult to localize the
constraint for purposes of specification, and it makes it difficult for a particular object or type to
“own” a constraint. Second, collaboration constraints are frequently extrinsic to a type, that is, a
type may be constrained outside of its knowledge. Most classic constraints are intrinsic, where a
type is fully aware of its constraints and imposes them on itself. These extrinsic problems are even
more difficult to document and debug as it is not always clear where documentation should go so
that developers can find it. Third, collaboration constraints frequently have semantic properties
such as object identity, temporal requirements, primitive values, and awareness of calling context.
Each of these properties adds their own difficulties to the problem, as Section 3.3 describes. Fi-
nally, collaboration constraints can span many kinds of files and data, thus making it difficult to
identify the faulty code as the fault may be in a completely different type of file from where the
error is signaled.

9.2 Contribution 2: Relationships and Fusion

This dissertation shows that relationships are a practical means to specify collaboration constraints that
occur in Java and XML frameworks.

Chapter 4 defines the relationship abstraction; this is a well studied abstraction from prior
work in programming languages that abstracts the shared state of several associated objects. Sec-
tions 4.1 and 4.3 use the Fusion language demonstrate how to specify collaboration constraints by
combining relationships into logical predicates to specify the preconditions and postconditions of
operations.

This dissertation shows how collaboration constraints can even cross the boundaries of pro-
gramming languages. Section 2.3 describes a series of software frameworks where declarative
files, such as XML, JSP, and ASPX, are necessary for plugins to use the frameworks. Section 3.3
highlights problems fro a single framework (ASPX) to show that collaboration constraints do in-
deed cross into these files. Section 5.4 shows that relationships, as implemented in Fusion, can
describe cross-language collaboration constraints, such as those between Java and XML. Chapter
6 and Appendix A show how this worked in practice and provide four real-world examples of
Fusion specifying constraints across language boundaries.

In addition to spanning programming language boundaries, Section 3.3 identifies several other
properties of collaboration constraints. Section 4.4 shows that relationships, as implemented in the
Fusion language, can describe these properties. As Section 6.3 describes, each of these properties
was seen in the Spring case study, and Fusion is able to specify all of them.
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Finally, Section 4.4 identifies several necessary properties for a practical specification language.
The specification language must have minimal specification writing cost, it must be composable
to make it possible to specify only a subset of an API, it must be possible to localize the error, and it
must contain multiple switches to control cost-effectiveness tradeoffs in different settings. Section
4.4 shows that Fusion meets each of these requirements in theory, and Section 6.5 confirms this in
practice.

9.3 Contribution 3: Fusion Analysis

This dissertation presents an adoptable static analysis of the specifications that can detect violated collabo-
ration constraints in plugin code.

The Fusion specifications are primarily useful because they can be used to verify code with a
static analysis. Section 4.2 describes a static analysis that checks code for conformance to Fusion
specifications and directs the developers to the cause of any errors found.

Any static analysis that intends to work on real-world examples must be able to handle the
imprecision that occurs from aliasing. Section 5.5 describes how this problem is generally com-
pounded by the presence of declarative files since they introduce even more potential objects for
aliasing. Section 5.6 shows how Fusion reduces the resulting imprecisions by specifying the re-
striction on the aliasing information through a relationship predicate.

Section 4.2 introduces three variants of the static analysis that are intended to different trade-
offs for cost-effectiveness and precision. Chapter 6 presents a detailed case study of how the three
variants work on sample code from the Spring developer forum postings. The case study shows
that for small examples, like those found in the forums, the pragmatic variant performs best,
though the complete variant also does well. The case study examines how changing the form of
of the specifications affects the precision of the results from the pragmatic variant. It also examines
how increased precision in the specifications does not always translate to a more useful analysis
result.

Finally, Chapter 7 compares Fusion to the industrial tool Coverity to show that while Fusion
is not adoptable in its current form, it has four properties that are necessary for adoption in prac-
tice. First, Fusion must have low specification burden. While this is already low due to only
the framework developer needing to write specifications, Chapter 7 shows that Fusion can also
receive automatically generated specifications from an existing dynamic protocol miner, thus re-
ducing the specification burden to zero. Second, Fusion must be fast enough to run overnight on
large codebases. Using the automatically generated specifications, Fusion successfully analyzed
the 1.5 MLOC DaCapo benchmark overnight. As Fusion is an intra-procedural analysis with com-
posable specifications, it should scale to larger codebases reasonably well. Third, the results from
the analysis must have a very low false positive rate to facilitate adoption. Fusion’s complete vari-
ant showed that even in the presence of complex aliasing and imprecise specifications, it could
produce a false positive rate of less than 50%. Finally, the error reports generated by Fusion must
be usable and helpful to developers; this is handled by using error-reporting logic to automati-
cally generate a human-readable, task-driven error message from the failing specification. While
Fusion does not completely meet the criteria set forth by the Coverity team, it comes close enough
to envision that a commercial-quality version of Fusion might be able to achieve their criteria.
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9.4 Future work

There are many potential avenues for future work, ranging from studies of socio-technical ecosys-
tems to improvements in usability of verification systems to new programming languages.

This work sought to understand what makes software frameworks difficult to use and how to
improve their usability in practice. While this can be done with additional tooling as described
in this thesis, or through improved designs, it could also be done through improving the existing
support communities. In my studies of software frameworks, I found that some framework fo-
rums, like ASP.NET, were exceptionally active, while others, like Ruby-on-Rails, seemed dead by
comparison. I noticed that the active frameworks had carefully cultivated their ecosystems and
the surrounding technologies. For example, in ASP.NET, framework developers were very active
on the forums, there was a ranking system which designated top members as “MVP”s, and there
was a built-in means for marking responses as having solved the original problem. What is the
effect of these features on the activity of the forum, and what is the effect to the entire ecosystem
of the framework?

It would be interesting to find out what makes for successful uses of forums and find ways to
encourage developers to use them in this way. In the study, it seemed that posters who got helpful
responses posted more code than others, yet carefully crafted the smallest example that would
reproduce their error. This of course takes time, but perhaps there are technical means to assist
developers in creating these smallest reproducible examples.

This work highlighted the need for more attention to the usability of verification systems.
While the work on error reporting logic was an improvement to error messages, these messages
are still written in terms of the formal specification, rather than in terms that the plugin developer
would understand. As the plugin developer is already having difficulty understanding the API,
it seems unreasonable to require them to learn the formal specification of the API as well. Yet,
all specification and verification systems seem to make the assumption that it is better to require
developers to understand a formal specification. This would require developers to not only learn
the formal language, but also to understand all the aspects of the specification, including those that
they are not using. If a developer forgot to check hasNext before calling next, is it really necessary
for them to understand the details of concurrent modification problems? Perhaps, however, we
can improve on this and make suggestions to the developer on how to fix their program within
terms of their own code. This would allow developers to quickly move through their current task,
yet the specifications could still be available for exploring and understanding the API.

Finally, this work has shown the need for a programming language specific to the needs of
configuration files, such as those seen in Eclipse, Spring, Hibernate, and others. These configura-
tion files are frequently written in XML, which is intended as a data markup language. However,
as seen in the case studies, these configuration files do more than act as a data repository; they
create objects, assign objects to fields, and even handle control flow. Yet XML was not intended as
a programming language, and the technologies that support it, such as XPath and XQuery, are not
sufficient for describing the deep semantics of these files.

While purists may suggest that these functions should be done in the programming language
of the framework, this is not sufficient either. These frameworks specifically moved away from this
model because the base programming languages had too many additional abstractions that made
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this difficult; the extensibility of XML makes it easy to use for configuration files. Additionally,
it allows for the configuration file to by changed at run time, not at compile time. This means
that the same codebase can be deployed to multiple environments without recompiling each time,
and the configuration file can be changed dynamically with the environment. Further still, as
such changes are normally handled by an IT professional rather than the programmer, XML is a
common, easy-to-learn syntax that an IT professional can easily learn.

Experts in programming languages would make a different suggestion: these configuration
files clearly represent a domain-specific language. Therefore, framework developers should cre-
ate a new language, specific to their needs, for these configuration files. While this is possible,
and while there are many good tools out there to help in this process, it still is not a satisfactory
solution. The plugin developers would have to learn a new syntax just to learn the framework;
XML works well because it is a known syntax, and while the semantics might change, there are
some pieces which are consistent, such as containment through nesting nodes.

Instead of using XML or creating domain specific languages for each framework, I believe
that the best solution would be a language for configuration that can be used by all frameworks.
This would get the benefits of XML (a common language and shared syntax for all frameworks)
yet also provide a set of language features that make sense for configuration. Possible language
features might include objects, awareness of the filesystem, built-in string manipulation, and an
extensible semantics. These are only potential ideas though, and there need to be further studies
of configuration files before creating such a language.

9.5 Tradeoffs, tradeoffs, tradeoffs...

Tradeoffs have been a recurrent theme in this dissertation and have appeared in both anticipated
and unanticipated ways.

There was an anticipated tradeoff in the static analysis. An analysis cannot find all and only
true positives; there must be false results. By creating three variants of the analysis, I was able to
explore the extremes of this tradeoff (soundness and completeness) and one point in the middle
(pragmatic) to determine which was most useful in practice. The answer was dependent on the
specifications used and the complexity of the analyzed code. The pragmatic variant as a clear win-
ner for precise, handwritten specifications analyzed on simple, under-development code, but the
complete variant was best for imprecise specifications analyzed on highly-complex, well-tested
production code.

An unanticipated, though unsurprising, tradeoff came from the specifications themselves. As
Chapter 6 discusses, there are many tradeoffs in the precision of the specifications, the complexity
and cost of writing them, and the quality of the results. While it is not terribly surprising that a
more precise specification is more complex and difficulty to write, what was surprising was that
in some cases, like Section 6.4.4, the error given was more useful from the less precise specifi-
cation. Even though the less precise specification might give a false positive, such instances are
rare enough in this case that we would trade that for increased quality of the true positives. The
flexibility of the specification language allowed me to describe each of the example problems in
several ways and select the most beneficial. Alternatively, Chapter 7 mentioned fully-automated
techniques that can generate specifications; while such specifications are comparatively very im-
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precise, they take relatively little cost to create. One can even imagine a semi-automated tool that
would provide further points on this tradeoff space.

The final tradeoff in this dissertation is not in the solution space, but in the problem domain
itself. As Chapter 2 describes, reusable component design is fraught with complex tradeoffs. It is
possible to eliminate collaboration constraints and all the problems they produce, but only at the
expense of other quality attributes of functionality. Each reusable component comes with a unique
set of business drivers, and so while there is design guidance available for how to manage this
tradeoff, there is no solution for how to actually solve it. A designer must use her own judgment
to select the most ideal location in this tradeoff space and attempt to limit the resulting damage
from collaboration constraints as much as possible.

This dissertation does not present a single, one-size-fits-all solution because there is not a sin-
gular problem. Collaboration constraints exist in many different settings, and there are a variety of
situations for both specification and analysis. A truly adoptable verification system allows itself to
be customized easily for each new situation it might encounter, thus increasing its versatility. This
dissertation has shown several ways this can occur, many of which can be used by other verifica-
tion systems. Through this variability, perhaps we can overcome the inherent usability problems
of software frameworks by providing developers with a set of tools and techniques that are as rich
and as versatile as the frameworks themselves.



Appendix A
Extended Case Study

This appendix contains the final four APIs studied in the Spring case study described in Chapter
6. While not as interesting as the four show in Chapter 6, they are included for completeness. The
quantitative results from the analysis are listed in Table 6.4.

A.1 Returning a ModelAndView with the errors map (MAVModel API)

Recall that Section 6.4.2 presented an example constraint about how to properly return a Model-
AndView object from the onSubmitmethod. In the study, I found two other threads that were about
a related constraint.

In thread 39209 [99], the user “senthilnathan74” was having problems getting the right model
data returned. Ze wanted to return the errors.getModel() map as the model, as seen in Listing
A.1, yet the view was throwing an exception when attempting to access the model map. The
problem with hir code is that it is using the wrong constructor; this constructor will create a new
map with a single key-value pair as given by the last two parameters. Instead, ze should have
used the constructor that takes a Map, as shown in Listing A.2

In another thread [47], the user “gurnard” was instructed by “Colin Yates” to “add errors.get-
Model() to the ModelAndView you return from onSubmit.” “gurnard”’s response was in Listing
A.3, which also doesn’t work, as it will add the errors.getModel() object as a value in the map

Listing A.1: Incorrect way of creating a new ModelAndView.
1 protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
2 Object command, BindException errors) throws Exception {
3 AccountForm accountForm = (AccountForm) command;

4 ...

5 ModelAndView mav = new ModelAndView(getSuccessView(), "account", errors.getModel());
6 return mav;
7 }
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Listing A.2: Correct way to create a new ModelAndViewwith errors.getModel().
1 protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
2 Object command, BindException errors) throws Exception {
3 AccountForm accountForm = (AccountForm) command;

4 ...

5 ModelAndView mav = new ModelAndView(getSuccessView(), errors.getModel());
6 return mav;
7 }

Listing A.3: Another incorrect way of creating a new ModelAndView.
1 protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
2 Object command, BindException errors) throws Exception {
3 AccountForm accountForm = (AccountForm) command;

4 ...

5 ModelAndView mav = new ModelAndView(getSuccessView(), "account", accountForm);
6 mav.addObject("errors", errors.getModel());

7 return mav;
8 }

rather than adding all the items within it. Instead, ze should have used addAllObjects(), as seen
in Listing A.5.

To specify these constraints, I first use an effect to mark Maps that are returned from a call to
errors.getModel() as bound models, as seen in Listing A.4. Then, I create a constraints to prevent
these methods from being called with a bound model. These constraints will allow Listing A.2 and
A.5 to pass, but they will produce warnings from all three variants for Listings A.1 and A.3.

A.2 Using Web Flow Actions (Action API)

One of the major sub-frameworks of Spring is the Web Flow framework. While many websites
allow the user to navigate anywhere they like, certain series of actions in a web application have
a specific path, or flow, that a user must follow. For example, the checkout process on many
websites requires that users perform certain actions in a certain order. Spring Web Flow (SWF)
allows programmers to define appropriate the appropriate paths that a user may take. These
flows may branch depending on user input, and they may call to sub-flows.

Listing A.6 shows a simple flow where a user can attempt to login; if the login fails, it redirects
back to the login page. Such a flow could be called by other flows to check if a user is logged in.
For this flow to work, there must be beans that represent the action that is taken at each of these
steps (ie: Lines 10 and 17). These beans must implement the Action interface or extend from a
class which implements this interface, such as the FormAction class. Listing A.7 shows the beans
that are used by this flow.

As described, this is a straightforward constraint. All beans referenced by an action tag in
the flow must exist in the ApplicationContext and they must be a subtype of Action. However,
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Listing A.4: Specifications
1 public class BindException extends Exception implements BindingResult
2 @BoundModel(target, result)
3 public Map getModel() {...}
4 ...

5 }

6

7 @Constraint(
8 op=‘‘ModelAndView(String view, String key, Object value)’’,
9 trg=‘‘BoundModel(errors, value)’’,

10 req=‘‘FALSE’’
11 )
12 @Constraint(
13 op=‘‘ModelAndView.addObject(String key, Object object) : ModelAndView’’,
14 trg=‘‘BoundModel(errors, object)’’,
15 req=‘‘FALSE’’
16 )
17 public class ModelAndView {...}

Listing A.5: Correct way of creating a new ModelAndViewwith a single key-value pair.
1 protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
2 Object command, BindException errors) throws Exception {
3 AccountForm accountForm = (AccountForm) command;

4 ...

5 ModelAndView mav = new ModelAndView(getSuccessView(), "account", accountForm);
6 mav.addAllObjects(errors.getModel());

7 return mav;
8 }
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Listing A.6: A simple example of a flow to log in to a system.
1 <?xml version="1.0" encoding="UTF-8"?>
2 <flow xmlns="http://www.springframework.org/schema/webflow"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://www.springframework.org/schema/webflow

5 http://www.springframework.org/schema/webflow/spring-webflow-1.0.xsd">

6

7 <start-state idref="checkLogin" />

8

9 <action-state id="checkLogin">

10 <action bean="checkStudentLoggedInAction"/>

11 <transition on="success" to="finish" />

12 <transition on="error" to="enterLogin" />

13 </action-state>

14

15 <view-state id="enterLogin" view="details">

16 <render-actions>

17 <action bean="loginAction"/>

18 </render-actions>

19 <transition on="enter" to="validateStudentLogin" />

20 </view-state>

21

22 <action-state id="validateStudentLogin">

23 <action bean="loginAction"/>

24 <transition on="success" to="finish" />

25 <transition on="error" to="enterLogin" />

26 </action-state>

27

28 <end-state id="finish"/>

29 </flow>

Listing A.7: Beans for the flow in Listing A.6
1 <beans xmlns="http://www.springframework.org/schema/beans"

2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:schemaLocation="http://www.springframework.org/schema/beans

4 http://www.springframework.org/schema/beans/spring-beans.xsd">

5

6 <bean id="checkStudentLoggedInAction" class="org.springframework.webflow.action.Action"/>

7

8 <bean id="loginAction" class="org.springframework.webflow.action.FormAction">

9 <property name="formObjectClass" value="StudentLoginInfo"/>

10 <property name="validator">

11 <bean class="studentValidator"/>

12 </property>

13 </bean>

14

15 <bean id="studentValidator" class="StudentLoginValidator"/>

16 </beans>
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there is a very subtle mistake that a developer can make.
In thread 38940 [91], the developer “raydawg” was working with an application that uses

both the Spring framework and the Struts framework. As described in Chapter 6, Spring is meant
to work alongside many other frameworks, and is completely compatible with Struts, another
common web application framework. This developer created a web flow similar to the one in
Listing A.6 and referenced their own version of the loginAction:1

1 <bean id="loginAction" class="edu.ucr.c3.rsvp.controller.students.Login"/>

When the developer ran this flow, the framework produced the following error:

org.springframework.beans.factory.BeanNotOfRequiredTypeException:

Bean named ’loginAction’ must be of type

[org.springframework.webflow.execution.Action],

but was actually of type

[edu.ucr.c3.rsvp.controller.students.Login]

This was very confusing for the developer; ze understood perfectly well that the loginAction
must extend from Action. In fact, ze posted the code in Listing A.8 on the forum, to show that
Login extended from the right classes.

The user “jeremyg484” discovered the problem:

It seems you are confusing a Struts action with an SWF action. FlowAction is SWF’s inte-
gration point for Struts that is meant to launch or resume a flow. It is a Struts action and is
to be configured in your struts-config. The action specified in your action-state on the other
hand is an SWF action, and as you currently have it defined it must be an implementation of
org.springframework.webflow.execution.Action as the error message states.

In other words, while FlowAction is a class provided by Spring, it extends from the Struts Action
interface, not the Spring Action interface!

To specify this constraint, we will use the Context relationship in Section 6.4.1 and a new re-
lationship, Action(String) to represent the name of a bean which must be an action. The same
XQuery from Section 6.4.1 will retrieve the Context relationship from the bean file (Listing 6.2),
and the XQuery in Listing A.9 will retrieve the Action relationship from the flow file. In the case
study, I found that certain relationships, like Context, were reused across many constraints.

The constraint itself is very simple, as shown in Listing A.10. It use the “XML” operator to
check the declarative files before processing any Java files to ensure that they are consistent. When
it finds an Action, it ensures that this action name was declared in the context with the right type.

A.3 Serializing Flow Objects (SerialFlow API)

Spring Web Flow allow developers to create objects that are used throughout the flow. These ob-
jects are called “flow variables” and are defined in the flow file; Listing A.11 provides an example

1Yes, that package shows that this comes from a developer at UC Riverside. It’s most interesting what you can learn
from package names on public forums!
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Listing A.8: Code posted by “raydawg” in [91].
1 public class Login extends RSVPAction {
2

3 public ActionForward executeRSVPApp(ActionMapping mapping, ActionForm form,
4 HttpServletRequest req, HttpServletResponse resp, HttpSession sess) throws Exception {
5

6 ActionForward forward = null;
7

8 ....some database logic, etc....

9

10 return forward;
11 }//executeFRSApp
12 }

13

14 public abstract class RSVPAction extends FlowAction {
15

16 public RSVPAction() {
17 super();
18 }

19

20 /∗∗
21 ∗ Do a security check and only call the executeFRSApp method if
22 ∗ it passes.
23 ∗/
24 public final ActionForward execute(ActionMapping mapping, ActionForm form,
25 HttpServletRequest req, HttpServletResponse resp) throws Exception {
26

27 .....some code.....

28 return forward;
29 }//execute
30 }
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Listing A.9: XQuery to retrieve the Action relationship
1 declare namespace sf="http://www.springframework.org/schema/webflow";
2 declare namespace fusion="http://code.google.com/p/fusion";
3 declare variable $doc as xs:string external;
4

5 for $state in doc($doc)/sf:flow/sf:view-state
6 for $action in $state/sf:render-actions/sf:action
7 return <Relationship name="Action" effect="ADD">
8 <Object name ="{data($action/@bean)}" type="java.lang.String"/>

9 </Relationship>

10

11 for $state in doc($doc)/sf:flow/sf:view-state
12 for $action in $state/sf:transition/sf:action
13 return <Relationship name="Action" effect="ADD">
14 <Object name ="{data($action/@bean)}" type="java.lang.String"/>

15 </Relationship>

16

17 for $state in doc($doc)/sf:flow/sf:action-state
18 for $action in $state/sf:action
19 return <Relationship name="Action" effect="ADD">
20 <Object name ="{data($action/@bean)}" type="java.lang.String"/>

21 </Relationship>

Listing A.10: Constraint to check that all actions are actually an Action.
1 @Constraint(
2 op=‘‘XML’’,
3 trg=‘‘Action(name)’’,
4 req=‘‘Context(name, action, context) AND action instanceof Action’’
5 )
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Listing A.11: A flow with a variable, example from [123]
1 <?xml version="1.0" encoding="UTF-8"?>
2 <flow xmlns="http://www.springframework.org/schema/webflow"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://www.springframework.org/schema/webflow

5 http://www.springframework.org/schema/webflow/spring-webflow-1.0.xsd">

6

7 <var name="customer" class="com.springinaction.pizza.domain.Customer" scope="flow"/>

8

9 <start-state idref="askForPhoneNumber" />

10

11 <view-state id="askForPhoneNumber" view="phoneNumberForm">

12 <transition on="submit" to="lookupCustomer" />

13 </view-state>

14

15 <action-state id="lookupCustomer">

16 <action bean="lookupCistomerAction"/>

17 <transistion on="success" to="checkDeliveryArea"/>

18 <transistion on-exception="com.springinaction.pizza.service.CustomerNotFoundException"

19 to="addNewCustomer"/>

20 </action-state>

21

22 <decision-state id="checkDeliveryArea">

23 <if test="{$flowScope.customer.inDeliveryArea}"

24 then="finish"

25 else="warnNoDeliveryAvailable"/>

26 </decision-state>

27

28 <view-state id="addNewCustomer" ... />

29

30 <view-state id="warnNoDeliveryAvailable" ... />

31

32 <end-state id="finish" />

33 </flow>

of a flow variable being defined (line 7) and used (line 23). There are four possible “scopes” for
a flow variable: request, flash, flow, and conversation. The scope defines the lifetime of the flow
variable. For example, a request variable only lasts for the length of a single request from the user,
while a flow variable will last for the entire flow but is not accessible in sub-flows. The framework
controls the creation and destruction of these objects.

In some scopes, like flash and flow, the framework must be able to store the object across
requests from the user. To do this, it serializes the object. This means that there is a hidden
constraint: flow objects with a flash or flow scope must implement Serializable. If this is not the
case, the framework will throw an exception at the point when it attempts to serialize the object.

To specify this, we first need to be aware of these flow variables that are declared in the
flow configuration file. Listing A.12 retrieves two unary relationships that represent whether an
object is a FlowVariable or a FlashVariable. The constraint specification itself runs after all the



A.3. SERIALIZING FLOW OBJECTS (SERIALFLOW API) 133

Listing A.12: XQuery to retrieve the FlowVariable and FlashVariable relationships
1 declare namespace sf="http://www.springframework.org/schema/webflow";
2 declare namespace fusion="http://code.google.com/p/fusion";
3 declare variable $doc as xs:string external;
4

5 for $var in doc($doc)/sf:flow/sf:var
6 where $var/@scope = "flow"
7 return <Relationship name="FlowVariable" effect="ADD">
8 <Object name ="{data($var/@name)}" type="{data($var/@class)}"/>

9 </Relationship>

10

11 for $var in doc($doc)/sf:flow/sf:var
12 where $var/@scope = "flash"
13 return <Relationship name="FlashVariable" effect="ADD">
14 <Object name ="{data($var/@name)}" type="{data($var/@class)}"/>

15 </Relationship>

Listing A.13: Constraint to check that all flow and flash variables are Serializable.
1 @Constraint(
2 op=‘‘XML’’,
3 trg=‘‘FlowVariable(bean) OR FlashVariable(bean)’’,
4 req=‘‘bean instanceof Serializable’’
5 )
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Listing A.14: Using a FormAction in a single view-state
1 <flow xmlns="http://www.springframework.org/schema/webflow"

2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:schemaLocation="http://www.springframework.org/schema/webflow

4 http://www.springframework.org/schema/webflow/spring-webflow-1.0.xsd">

5

6 <start-state idref="enterCriteria"/>

7

8 <view-state id="enterCriteria" view="searchCriteria">

9 <render-actions>

10 <action bean="formAction" method="setupForm"/>

11 </render-actions>

12 <transition on="search" to="displayResults">

13 <action bean="formAction" method="bindAndValidate"/>

14 </transition>

15 </view-state>

16 ...

17 </flow>

XML is loaded, and it verifies that all objects that are a FlowVariable or FlashVariable implement
Serializable, as seen in Listing A.13.

It is interesting that this constraint takes exactly the same form as the constraint in Section A.2.
This makes sense; both are checking that an object declared in XML has the right Java type. If XML
was aware of these types, or if a custom typed configuration language was used instead, neither
of these constraints would be necessary because they would be built into the typechecker. While
Fusion can be used to encode a typesystem, it is certainly not the ideal way of doing so.

A.4 The FormAction lifecycle (SetupForm API)

In the same way that Spring provided a Controller hierarchy, it also provides an Action hier-
archy with reusable subclasses for common tasks. The FormAction is an Action that represents
a user’s submitted data to a form, or set of forms across a flow, and works analogously to the
SimpleFormController.

Using a FormAction is a little more complex though. While SimpleFormController ensures
that all callbacks happen in the right order, FormAction depends on the programmer to make the
callbacks for it within the XML flow. Listing A.14 provides an example of such a file. In this
example, the programmer sets up the FormAction in the state “enterCriteria” (line 10) and then
binds and validates it at the same time in the transition out of the state (line 13). Listing A.15
shows how these can be split up across multiple states; this example sets up the FormAction on
entry to the “enterCustomerDetails” state, binds it on the “submit” transition, and validates it in
the “processDetails” state.

Notice that Web Flow provides a great deal of flexibility; we can perform other actions between
these states, skip the user ahead based upon entered data, or even cancel the entire flow at any
time. This flexibility comes at the cost of usability of the API though. The programmer must
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Listing A.15: Using a FormAction in multiple states, based on code from [104]
1 <flow xmlns="http://www.springframework.org/schema/webflow"

2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:schemaLocation="http://www.springframework.org/schema/webflow

4 http://www.springframework.org/schema/webflow/spring-webflow-1.0.xsd">

5

6 <start-state idref="enterCustomerDetails"/>

7

8 <view-state id="enterCustomerDetails" view="cutsomerRegisterForm">

9 <entry-actions>

10 <action bean="customerRegisterAction" method="setupForm"/>

11 </entry-actions>

12 <transition on="submit" to="processDetails">

13 <action bean="customerRegisterAction" method="bind"/>

14 </transition>

15 </view-state>

16

17 <action-state id="processDetails">

18 <action bean="customerRegisterAction" method="validate"/>

19 <transition on="success" to="enterEnquiryDetails"/>

20 <transition on="error" to="enterCustomerDetails"/>

21 </action-state>

22 ...

23 </flow>

still respect the unwritten rules about the order in which things may be called. In the case study,
three programmers [31, 85, 104] did not set up the FormAction before binding it. This caused
unusual problems, including not transitioning in exception conditions (results in not catching the
exception), not having the model data available in the view (results in an exception from the view),
and missing property editors that cause the view to display strangely.

To describe the constraint that a FormActionmust be set up at some point before being bound,
we will need the following four relationships:

• SetupAction(String, FormAction) provides the name of the state that sets up a FormAction.

• BindAction(String, FormAction) provides the name of the state that binds a FormAction.

• Transition(String, String, String) describes the transition step from one state to another state.

• Path(String, String) represents the existence of a path from one state to another through
Transitions.

The XQuery to retrieve the first three relationships is shown in Listing A.16. The Path relationship
is more unusual. This relationship represents the transitive closure on the Transition relationship
and is created through use of the @Infer specs shown in Listing A.17.

Again, the constraint itself is simple: we specify that the XML must ensure that if a binding
call is made on a FormAction, then a setup call must have occurred sometime in advance. This
constraint is shown in Listing A.18.
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Listing A.16: XQuery to retrieve the SetupAction, BindAction and Transition relationships
1 declare namespace sf="http://www.springframework.org/schema/webflow";
2 declare namespace fusion="http://code.google.com/p/fusion";
3 declare variable $doc as xs:string external;
4

5 for $state in doc($doc)/sf:flow/sf:view-state
6 for $action in $state/sf:render-actions/sf:action
7 where $action/@method = "setupForm"
8 return
9 <Relationship name="SetupAction" effect="ADD">

10 <Object name ="{data($state/@id)}" type="java.lang.String"/>

11 <Object name ="{data($action/@bean)}" type="org.springframework.webflow.action.FormAction"/>

12 </Relationship>

13

14 for $state in doc($doc)/sf:flow/sf:view-state
15 for $action in $state/sf:transition/sf:action
16 where $action/@method = "bindAndValidate"
17 return
18 <Relationship name="BindAction" effect="ADD">

19 <Object name ="{data($state/@id)}" type="java.lang.String"/>

20 <Object name ="{data($action/@bean)}" type="org.springframework.webflow.action.FormAction"/>

21 </Relationship>

22

23 for $state in doc($doc)/sf:flow/sf:view-state
24 for $action in $state/sf:transition/sf:action
25 where $action/@method = "bind"
26 return
27 <Relationship name="BindAction" effect="ADD">

28 <Object name ="{data($state/@id)}" type="java.lang.String"/>

29 <Object name ="{data($action/@bean)}" type="org.springframework.webflow.action.FormAction"/>

30 </Relationship>

31

32 for $state in doc($doc)/sf:flow/sf:view-state
33 for $trans in $state/sf:transition
34 return
35 <Relationship name="Transition" effect="ADD">

36 <Object name ="{data($state/@id)}" type="java.lang.String"/>

37 <Object name ="{data($trans/@on)}" type="java.lang.String"/>

38 <Object name ="{data($trans/@to)}" type="java.lang.String"/>

39 </Relationship>



A.4. THE FORMACTION LIFECYCLE (SETUPFORM API) 137

Listing A.17: Specifications to infer a path between states.
1 @Infer(
2 trg=‘‘Transition(pState, t, state) AND Transition(state, s, nState)’’,
3 eff={‘‘Path(pState, nState)’’}
4 )
5 @Infer(
6 trg=‘‘Transition(pState, t, nState)’’,
7 eff={‘‘Path(pState, nState)’’}
8 )

Listing A.18: Specifications to enforce that setup always occurs sometime before binding.
1 @Constraint(
2 op=‘‘XML’’,
3 trg=‘‘BindAction(state, form)’’,
4 req=‘‘SetupAction(pState, form) AND Path(pState, state)’’
5 )

This constraint shows one of the interesting differences between the three variants of the anal-
ysis. Recall from Chapter 5 that while the trigger predicate will bind all variables with a universal
quantifier, the requires predicate uses either a universal or existential depending on the variant.
This issue only becomes relevant in cases like Listing A.18, where a variable is used only in the
requires predicate (pState). Therefore, for the complete variant, this constraint reads “if a state
binds a form, then some prior state must have setup the form.” On the other hand, the sound
variant checks that “if a state binds a form, then all prior states must have setup the form.” Given
this, it is unsurprising that the sound variant always gives a warning in practice.
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Appendix B
Formalism

This appendix formally presents the abstract grammar and semantics of the specifications and
analysis. The first section provides the grammar, the following sections define several operators
and functions on elements of the grammar, and the final section presents the inference rules that
define the formal semantics. In this appendix, I will be using the following typographical nota-
tions:

• an overbar (x̄, ¯̀, ȳ : τ̄) represents an ordered list. |x̄| gives the length of the list.

• braces ({`}, {cons}, {P ⇓ Q}) represents an unordered set.

• braces with an arrow ({y 7→ x}) represents an unordered map with unique keys which can
be used to retrieve values from the map. dom and rng functions can be used to access the
domain or range of a map.

• braces with two semicolons ({A;B;C}) represent a set of triples. Projection can be used
({A;B;C}.B) to access a set with a single element of the triple.

• ∅ represents an empty list, set, or map.

• sets and maps can be created with set comprehension (σ = {y 7→ ` | X(y, x) = `})

B.1 Abstract Grammar

Listing B.1 describes the abstract grammar of Fusion. In this grammar, I use the following special
variables:

• x represents a source variable

• y represents a specification variable, where the values target and result have special mean-
ings

• m represents a method name

139
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• rel represents a relation name

• τ represents a type

• ` represents a label for an abstraction of a runtime object

A constraint is represented with cons, which has the five parts described in Chapters 4 and
5. P is a logical predicate on relationship predicates R, which are across specification variables
y. For this formalism, the only atomic predicates are relationship predicates, but this is easily
extended. M,N, T and R are analogous to P,Q,A, and S, but they are across object labels ` instead
of specification variables. R is an actual relationship across abstractions of objects as described in
Chapter 4.

Source instructions are represented in three address code with instr, and the specifications to
describe them are shown as op. Only four instructions and operations are shown, but this is also
easily extended in the obvious manner.

The flow lattice is a map of relationships to ternary values. There is also a “delta lattice” that
represents the effects that should be made to the flow lattice. This δ uses a seven-point lattice with
elements E, where bot represents “the constraint does not apply” and ∗ represents “the constraint
applies, but no change was specified for the relationship in question”. This distinction is important
in order to handle situations where there are multiple bindings for a given constraint, some of
which are invalid and some of which are valid but provide partially-contradicting effects. I will
refer to bot as the “no effect” and ∗ as the “ignore effect”. For a closer examination of how these
are used, please see Figures B.25 and B.17

The next pieces of the grammar represent the bindings from specification variables to source
variables and object labels. As Chapter 5 describes, the Fusion analysis has the ability to update
the points-to lattice through use of the restrict predicate. These pieces are necessary for both
binding variables and for making these “strong updates” to the variables in the points-to lattice.

The last pieces of the grammar are all environments that will be used. As before, B and A

are the boolean constant propagation lattice and the points-to lattice respectively. R, C, and I
are the sets of Fusion relations, constraint specifications, and inference specifications to use in the
analysis.
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constraint cons ::= op : Pctx ⇒ Preq ⇓ Q̄eff;Prst
predicate P ::= P1 ∧ P2 | P1 ∨ P2 | P1 =⇒ P2 | Q | true | false

negation predicate Q ::= ¬A | A

atomic predicate A ::= S | S/y | . . .

relation predicate S ::= rel(ȳ)

relationship logic M ::= M1 ∧M2 |M1 ∨M2 |M1 =⇒ M2 | N | true | false

negation relationship N ::= ¬T | T

atomic relationship T ::= R | R/` | . . .

relationship R ::= rel(¯̀)

source instruction instr ::= xret = xthis.m(x̄) | xret = new τ(x) |

return xret(xthis.m(x̄)) | begin(x.m(x̄)) | . . .

instruction signature op ::= τthis.m(τ̄ ȳ) : τret | new τ(τ̄ ȳ) |

eom(τthis.m(τ̄ ȳ) : τret) | bom(τthis.m(τ̄ ȳ)) | . . .

flow lattice ρ ::= {R 7→ t}

ternary logic t ::= True | False | Unknown
delta lattice δ ::= {R 7→ E}

delta lattice elements E ::= unknown | true | false | true ∗ | false ∗ | ∗ | bot

variable binding β ::= {y 7→ x}
substitution σ ::= {y 7→ `}

set of substitutions Σ ::= {σ}

spec updates α ::= {y 7→ {`}}

source updates γ ::= {x 7→ {`}}

bool constants lattice B ::= {` 7→ t}

alias lattice A ::= < Γ`; L >

aliases L ::= {x 7→ {`}}

location types Γ` ::= {` : τ}

spec variable types Γy ::= {y : τ}

relation type R ::= {rel 7→ τ̄}

constraints C ::= {cons}

relation inference rules I ::= {P ⇓ Q}

Figure B.1: Abstract grammar of Fusion
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B.2 Operations on lattices

There are two lattices used in the semantics. The flow lattice ρ is the lattice used by the flow
analysis. ρ is a tuple lattice of relationships to ternary values, which are in the lattice shown by
Figure B.2a. The effect lattice δ is only used internally in the Fusion semantics. It is also a tuple
lattice, but it maps relationships to the seven-point effect lattice in Figure B.2b.

Both of these sub-lattices have the expected lattice operations (v and t), plus there are four
additional operators as seen in Figures B.3 and B.4 .

• The equality join operator is similar to the t operator, but it recombines truewith true∗
and falsewith false∗

• The override operator allows one effect to override the other, unless it is bot or ∗.

• The polarize operator
↑
∗ moves the true and false elements to true∗ and false∗ respec-

tively. This is almost the same as E t ∗, except that bot remains where it is.

• The change operator ⇐ makes the effect prescribed in E onto the ternary value t.

These operators on the sub-lattices are used in the expected way on the parent lattices. Figure B.5
shows the operators for δ, and Figure B.6 shows the operators for ρ.
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(b) The seven-point effect lattice, used by δ

Figure B.2: The sub lattices used by ρ and δ

El Er = E ′

E bot = E

bot E = E

E ∗ = E

∗ E = E

E E = E

true true∗ = true

true ∗ true = true

false false∗ = false

false ∗ false = false

true false = unknown

false true = unknown

true ∗ false = unknown

false true∗ = unknown

false ∗ true = unknown

true false∗ = unknown

true ∗ false∗ = unknown

false ∗ true∗ = unknown

E unknown = unknown

unknown E = unknown

Figure B.3: Equality join operator on E
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E E ′ = E ′′

E bot = E

E ∗ = E

E true = true

E true∗ = true∗
E false = false

E false∗ = false∗
E unknown = unknown

↑
∗ E = E ′ ↑

∗ false = false∗↑
∗ true = true∗↑
∗ ∗ = ∗↑

∗ bot = bot↑
∗ unknown = unknown↑
∗ true∗ = true∗↑
∗ false∗ = false∗

t ⇐ E = t ′

t ⇐ bot = t

t ⇐ ∗ = t

False ⇐ false∗ = False
True ⇐ false∗ = Unknown

Unknown ⇐ false∗ = Unknown
True ⇐ true∗ = True

False ⇐ true∗ = Unknown
Unknown ⇐ true∗ = Unknown

t ⇐ false = False
t ⇐ true = True

t ⇐ unknown = Unknown

Figure B.4: Operations on the elements of the relationship lattice, E
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δ v δ ′

∅ v δ
(v−∅)

δc v δa Ec v Ea

R 7→ Ec, δc v R 7→ Ea, δa
(v−δ)

δ t δ ′ = δ ′′

∅ t∅ = ∅
(t−∅)

δl t δr = δ ′ El t Er = E ′

R 7→ El, δl t R 7→ Er, δr = R 7→ E ′, δ ′
(t−δ)

δ δ ′ = δ ′′

∅ ∅ = ∅
(EQJOIN−∅)

δl δr = δ ′ El Er = E ′

R 7→ El, δl R 7→ Er, δr = R 7→ E ′, δ ′
(EQJOIN−δ)

δ δ ′ = δ ′′

∅ ∅ = ∅
(OVERRIDE−∅)

δl δr = δ ′ El Er = E ′

R 7→ El, δl R 7→ Er, δr = R 7→ E ′, δ ′
(OVERRIDE−δ)

↑
∗ δ = δ ′

↑
∗ ∅ = ∅

(POLAR−∅)

↑
∗ δ = δ ′

↑
∗ E = E ′↑

∗ R 7→ E, δ = R 7→ E ′, δ ′
(POLAR−δ)

Figure B.5: Operations on the change lattice, δ
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ρ v ρ ′

∅ v ρ
(t−∅)

ρc v ρa tc v ta

R 7→ tc, ρc v R 7→ ta, ρa
(t−ρ)

ρ t ρ ′ = ρ ′′

∅ t∅ = ∅
(t−∅)

ρl t ρr = ρ ′ tl t tr = t ′

R 7→ tl, ρl t R 7→ tr, ρr = R 7→ t ′, ρ ′
(t−ρ)

ρ ⇐ δ = ρ ′

∅ ⇐ ∅ = ∅
(⇐−∅)

ρ ⇐ δ = ρ ′ t ⇐ E = t ′

R 7→ t, ρ ⇐ R 7→ E, δ = R 7→ t ′, ρ ′
(⇐−ρ)

Figure B.6: Operations on the relationship lattice, ρ
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B.3 Operations on specifications

Substitution of predicates is straightforward. Figure B.7 shows how given a P over specification
variables and a substitution σ, we can create a predicate in the target language over object labels
`.

The semantics will need to be able to access the free variable that occur within each part of
the constraint and the type that is expected. This will be represented by the specification typing
environment Γy . Figure B.8 shows how the free variables are retrieved from the specifications.
The constraint itself finds its free variables by combining the free variables of all the subparts.
This operator must respect the types required by each part, as seen in Figure B.9. Notice that the
semantics are that if two typing contexts have different types for a given y, then one must be a
subtype of the other. Theoretically, this could be extended to allow for intersection types, and in
fact the implementation of Fusion will allow this.

P[σ] = M

(P1 ∧ P2)[σ] = P1[σ] ∧ P2[σ]

(P1 ∨ P2)[σ] = P1[σ] ∨ P2[σ]

(P1 =⇒ P2)[σ] = P1[σ] =⇒ P2[σ]

true[σ] = true

false[σ] = false

(¬A)[σ] = ¬A[σ]

(rel(ȳ)/ytest)[σ] = rel(ȳ)[σ]/σ(ytest)

rel(ȳ)[σ] = rel(ȳ[σ])

(y, ȳ)[σ] = σ(y), ȳ[σ]

Figure B.7: Substitutions on specifications.
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FV(cons) = Γy

FV(op : Pctx ⇒ Preq ⇓ Q̄eff;Prst) = FV(op) ∪ FV(Pctx) ∪ FV(Preq) ∪ FV(Q) ∪ FV(Prst)

FV(P) = Γy

FV(P1 ∧ P2) = FV(P1) ∪ FV(P2)

FV(P1 ∨ P2) = FV(P1) ∪ FV(P2)

FV(P1 =⇒ P2) = FV(P1) ∪ FV(P2)

FV(true) = ∅
FV(false) = ∅
FV(¬A) = FV(A)

FV(rel(ȳ)/ytest) = FV(A), ytest : boolean

FV(rel(ȳ)) = ȳ : R(rel)

FV(instr) = Γy

FV(τthis.m(τy) : τret) = target : τthis, result : τret, y : τ

FV( new τ(τy)) = target : τ, y : τ

FV(eomτthis.m(τy) : τret) = result : τret, target : τthis
FV(bomτthis.m(τy)) = target : τthis, y : τ

Figure B.8: Generating free variables from specifications

Γy ∪ Γ ′y = Γ ′′y

Γy ∪∅ = Γy
(∪−∅)

y 6∈ dom(Γ ly) Γ ly ∪ Γ ry = Γy

Γ ly ∪ y : τ, Γ ry = y : τ, Γy
(∪−NOTIN)

τl <: τr Γ ly ∪ Γ ry = Γy

y : τl, Γ ly ∪ y : τr, Γ ry = y : τl, Γy
(∪−LEFTSUB)

τr <: τl Γ ly ∪ Γ ry = Γy

y : τl, Γ ly ∪ y : τr, Γ ry = y : τr, Γy
(∪−RIGHT−SUB)

Γy ⊆ Γ ′y

dom(Γy) ⊆ dom(Γ ′y) ∀y : τ ∈ Γy . Γ ′y <: τ

Γy ⊆ Γ ′y
(⊆−ΓY )

Figure B.9: Operations on free variables
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B.4 Points-to Operations

While I have defined the points-to lattice as < Γ`,L >, it actually has a third part, Γx , that gives the
types of the variables. However, as this is static information, this is always the same, regardless of
whether we have an abstract or concrete heap. As it is only used in the operator matching rules, it
will be elided.

Recall from Chapter 4 that A must always respect the abstraction from Theorem 8. Given this,
thev operation on A must be given as shown in Figure B.10. Figure B.10 also shows the operation
to make a strong update to A with the updates in γ.

When a constraint generates a strong update, it will initially be on α, a mapping on specifica-
tion variables. This will eventually be converted into γ, a mapping on source variables, using the
bindings from β. The v operator for α and γ is shown in Figure B.11, and the substitution using
β is in Figure B.12.

A vA A ′

dom(L ′) = dom(L)

dom(Γ ′` ) ⊆ dom(Γ`) ∀ ` ′ : τ ′ ∈ Γ ′` . τ ′ <: Γ`(`
′) ∀ x ′ 7→ ¯̀ ′ ∈ L ′. ¯̀′ ⊆ L(x ′) ∧ ¯̀ ′ 6= ∅

< Γ ′` ; L
′ >vA< Γ`; L >

()(vA)

A ⇐ γ = A ′

A ⇐ ∅ = A
(⇐−∅)

< Γ`; L >⇐ γ =< Γ ′` ; L
′ > x ∈ dom(L) {`} ⊆ L(x)

< Γ`; L >⇐ x 7→ {`}, γ =< Γ ′` ; L
′[x 7→ {`}] >

(⇐−SET)

Figure B.10: Operations on the points-to lattice A
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γ v γ ′

∅ v γ
(v−∅)

γc v γa {`}c ⊆ {`}a

x 7→ {`}c, γc v x 7→ {`}a, γa
(v−6∅)

γl t γr = γ ′

∅ t∅ = ∅
(t−∅)

γl t γr = γ ′ {`}l ∪ {`}r = {`}

x 7→ {`}l, γl t x 7→ {`}r, γr = x 7→ {`}, γ ′
(t−6∅)

α v α ′

∅ v ∅
(v−∅)

αc v αa {`}c ⊆ {`}a

y 7→ {`}c, αc v y 7→ {`}a, αa
(v−6∅)

Figure B.11: Precision of γ and α

α[β] = γ

∅[β] = ∅
y 7→ {`}, α[β] = y 7→ {`}[β], α[β]

y 7→ {`}[y 7→ x, β] = x 7→ {`}

y1 7→ {`}[y2 7→ x, β] = y1 7→ {`}[β]

y 7→ {`}[∅] = ∅

Figure B.12: Substitution on α
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B.5 The Boolean Constant Propagation lattice

The Fusion analysis also relies on a boolean constant propagation analysis. Fusion assumes an
abstraction of this lattice that maps object labels to ternary values and the expected precision
operator v as shown in Figure B.13. Fusion uses this lattice when creating an effect based upon a
relationship effect. Figure B.14 shows the rules for the function value, which will create a mapping
R 7→ E based upon the lattice and an effect N.

B vB B ′

dom(Bc) = dom(Ba) ∀ ` : t ∈ Bc. t v Ba(`)

Bc vB Ba
()(vB)

Figure B.13: Precision for the boolean constant propagation lattice

value(B;N) = R 7→ E

value(B;R) = R 7→ true (VAL−R)
value(B; ¬R) = R 7→ false (VAL−¬R)

B(`) = True
value(B;R/`) = R 7→ true (VAL−T−TRUE)

B(`) = True
value(B; ¬R/`) = R 7→ false (VAL−¬T−FALSE)

B(`) = False
value(B;R/`) = R 7→ false (VAL−T−FALSE)

B(`) = False
value(B; ¬R/`) = R 7→ true (VAL−¬T−TRUE)

Figure B.14: Using B to get the value of an effect N
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B.6 Functions

The semantics will use 6 functions that use set creation to produce new substitutions and lattices.
The first two functions, seen in Figure B.15 are for creating sets of substitutions. The function

findLabels will, given a lattice A, a binding β, and specification types as in Γy , return the set of all
substitutions possible from A and β such that each substitution has the domain given in β and
respects the types given in Γy . The domain of Γy may be larger than the domain of β. The second
function, allValidSubs, does something similar, but it is not limited by β. Instead, it will create all
substitutions based upon the entire domain of Γy such that the types of Γy are respected and that
each substitution created is a superset of the given substitution σ. That is, it will use σ as a starting
point for creating further substitutions based on Γvary.

The next 3 functions, seen in Figure B.17, will generate effect lattices δ. The functions ignore
and⊥ are straightforward and will create a δ such that every R is mapped to ∗ and bot respectively.
The function lattice will create a delta lattice from the effects list of a constraint. It will do so given
a specific substitution σ and a B to use for test effects. Notice that when multiple effects are made,
they can override each other such that later effects override earlier effects.

The last function, transfer, in Figure B.18, will transfer a relationship lattice into a new domain,
as dictated by A. As the flow analysis proceeds, the lattice A will gain new variables x and object
labels `. These new object labels will cause new relationships to be possible. The function transfer
adds these new relationships and sets them to the default starting value, Unknown.

findLabels(< Γ`; L >;β; Γy) = Σ

Σ = {σ ′ | σ = {y 7→ ` | y ∈ dom(β) ∧ ` ∈ L(β(y)) ∧ ∃ τ ′ . τ ′ <: Γ`(`) ∧ τ ′ <: Γy(y)} ∧

σ ′ ∈ allValidSubs(< Γ`; L >;σ; Γy)}

allValidSubs(< Γ`; L >;σ; Γy) = Σ

Σ = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ ′ . ∃ τ ′ . τ ′ <: Γ`(`) ∧ τ ′ <: Γy(y)}

Figure B.15: Functions to create substitutions
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⊥(σ) = α

α = {y 7→ ∅ | y ∈ dom(σ)}

Figure B.16: Creating an empty update

ignore(< Γ`; L >) = δ

δ = {rel(¯̀) 7→ ∗ | R(rel) = τ̄ ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

⊥(< Γ`; L >) = δ

δ = {rel(¯̀) 7→ bot | R(rel) = τ̄ ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

lattice(A; B;σ;Q, Q̄) = δ

δ = lattice(A; B;σ;Q) lattice(A; B;σ; Q̄)

lattice(A; B;σ;Q) = δ

δ = ignore(A) {value(B;Q[σ ′]) | σ ′ ∈ allValidSubs(A;σ; FV(Q))}

lattice(A; B;σ; ∅) = δ

δ = ignore(A)

Figure B.17: Functions to create an effect lattice δ.

transfer(ρ; A) = ρ ′

ρ ′ = {R 7→ t | R = rel(¯̀) ∧ R(rel) = τ̄ ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃τ ′ . τ ′ <: τi ∧ τ ′ <:

Γ`(`i) ∧ (R ∈ dom(ρ) =⇒ t = ρ(R)) ∧ (R 6∈ dom(ρ) =⇒ t = Unknown)}

Figure B.18: Transfer lattice into new aliasing domain function
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B.7 Rules

This section will describe the formal rules for the flow function by starting with the lowest level
rules and working back up.

At the core of the analysis is a simple logic engine. This logic engine will simply evaluate
whether a given relationship predicate, M is satisfied by the context ρ. The rules for this are
shown in Figures B.19-B.22.

While most of the rules (Figures B.21 and B.22) are as one would expect for a three-value logic
system and the same for all variants, Figure B.19 shows an interesting difference. In the sound and
complete variants, the rule for checking the atomic relationship R is a trivial lookup into ρ (REL).
This is also the case in the pragmatic variant when the relationship maps to either True or False
(REL-T-F). The interesting case is in the pragmatic variant when the relationship maps to Unknown.
The pragmatic variant admits the rules (REL-U) and (INFER) to handle this case. These rules attempt
to use the inferred relationships, defined in Section 4.3.4, to retrieve the desired relationship.

The rule for the inference judgement ρ infers ρ ′ is defined in Figure B.20. This rule first checks
to see if the trigger of an inferred relation is true, and if so, uses the function lattice to produce the
inferred relationships described by R̄[σ]. For all relationships not defined by R̄[σ], lattice defaults
to bot to signal that there are no changes. There are two properties to note about the rules (REL-U),
(INFER), and (DISCOVER):

1. The use of inferred relationships does not change the original lattice ρ. This allows the
inferred relationships to disappear if the generator, P, is no longer true.

2. Any inferred values must be strictly more precise than the relationship’s value in ρ, as enforced
by ρ ′ @ ρ. This means that relationships can move from Unknown to True, but they can not
move from False to True. This property guarantees termination and gives declared effects
precedence over inferred ones.

Inferred relationships can not be used in the sound and complete variants. This does not
limit the expressiveness of the specifications, as inferred relations can always be written directly
within the constraints. Doing so does make the specifications more difficult to write; the frame-
work developer must add the inferred relations to any constraint which will also prove the trigger
predicate. Since inferred relations do change the semantics, they are not syntactic sugar, but they
are not necessary for reasons beyond the ease of writing specifications.
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A; B; ρ ` R t Sound and Complete variants

ρ(R) = t

A; B; ρ ` R t
(REL)

A; B; ρ ` R t Pragmatic variants

ρ(R) = t t 6= Unknown
A; B; ρ ` R t

(REL−T−F)

ρ(R) = Unknown A; B ` ρ infers ρ ′ ρ ρ ′ ` R t t 6= Unknown
A; B; ρ ` R t

(INFER)

ρ(R) = Unknown
¬∃ρ . A; B ` ρ infers ρ ′ ∧ ρ ρ ′ ` R t ∧ t 6= Unknown

A; B; ρ ` R Unknown
(REL−U)

Figure B.19: Three value truth evaluation on M, continued on B.21. The sound and complete
variant use only the rule rel− sound− complete, the other rules are for the pragmatic variant.

A; B ` ρ infers ρ ′

P ⇓ Q̄ ∈ I A; B; ρ ` P[σ] True lattice(A;B;σ; Q̄) = δ ρ ′ = ρ ⇐ δ ρ ′ @ ρ

A; B ` ρ infers ρ ′ (DISCOVER)

Figure B.20: Inferred Relationship Discovery.
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A; B; ρ `M t

A; B; ρ ` R t B(`test) = t t 6= Unknown
A; B; ρ ` R/`test True

(REL−TEST−T)

A; B; ρ ` R t1 B(`test) = t2 t1 6= Unknown t2 6= Unknown t1 6= t2

A; B; ρ ` R/`test False
(REL−TEST−F)

A; B; ρ ` R Unknown
A; B; ρ ` R/`test Unknown

(REL−TEST−U1)
B(`test) = Unknown A; B; ρ ` R t

A; B; ρ ` R/`test Unknown
(REL−TEST−U2)

A; B; ρ ` T Unknown
A; B; ρ ` ¬T Unknown

(¬T−U)
A; B; ρ ` T False
A; B; ρ ` ¬T True

(¬T−T)
A; B; ρ ` T True

A; B; ρ ` ¬T False
(¬T−F)

A; B; ρ ` true True
(TRUE)

A; B; ρ ` false False
(FALSE)

A; B; ρ `M1 False
A; B; ρ `M1 =⇒ M2 True

( =⇒ −T1)
A; B; ρ ` P2 True

A; B; ρ `M1 =⇒ M2 True
( =⇒ −T2)

A; B; ρ `M1 True A; B; ρ `M2 False
A; B; ρ `M1 =⇒ M2 False

( =⇒ −F)

A; B; ρ `M1 Unknown A; B; ρ `M2 Unknown
A; B; ρ `M1 =⇒ M2 Unknown

( =⇒ −U1)

A; B; ρ `M1 True A; B; ρ `M2 Unknown
A; B; ρ `M1 =⇒ M2 Unknown

( =⇒ −U2)

A; B; ρ `M1 Unknown A; B; ρ `M2 False
A; B; ρ `M1 =⇒ M2 Unknown

( =⇒ −U3)

Figure B.21: Three value truth evaluation onM, continued on B.22.
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A; B; ρ `M t

A; B; ρ `M1 True A; B; ρ `M2 True
A; B; ρ `M1 ∧M2 True

(∧−T)
A; B; ρ `M1False

A; B; ρ `M1 ∧M2False
(∧−F1)

A; B; ρ `M2 False
A; B; ρ `M1 ∧M2 False

(∧−F2)
A; B; ρ `M1 True A; B; ρ `M2 Unknown

A; B; ρ `M1 ∧M2 Unknown
(∧−U1)

A; B; ρ `M1 Unknown A; B; ρ `M2 True
A; B; ρ `M1 ∧M2 Unknown

(∧−U2)

A; B; ρ `M1 Unknown A; B; ρ `M2 Unknown
A; B; ρ `M1 ∧M2 Unknown

(∧−U3)

A; B; ρ `M1 True
A; B; ρ `M1 ∨M2 True

(∨−T1)
A; B; ρ `M2 True

A; B; ρ `M1 ∨M2 True
(∨−T2)

A; B; ρ `M1 False A; B; ρ `M2 False
A; B; ρ `M1 ∨M2 False

(∨−F)

A; B; ρ `M1 False A; B; ρ `M2 Unknown
A; B; ρ `M1 ∨M2 Unknown

(∨−U1)

A; B; ρ `M1 Unknown A; B; ρ `M2 False
A; B; ρ `M1 ∨M2 Unknown

(∨−U2)

A; B; ρ `M1 Unknown A; B; ρ `M2 Unknown
A; B; ρ `M1 ∨M2 Unknown

(∨−U3)

Figure B.22: Three value truth evaluation onM, continued from B.21.
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instr : op Z⇒ β

∃τ ′ . τ ′ <: τthis ∧ τ ′ <: Γx(xthis)

∃τ ′ . τ ′ <: τret ∧ τ ′ <: Γx(xret) ∃τ ′ . τ ′ <: τ ∧ τ ′ <: Γx(x)

xret = xthis.m(x) : τthis.m(τ y) : τret Z⇒ xret 7→ result, xthis 7→ target, x 7→ y
(INVOKE)

∃τ ′ . τ ′ <: new ∧ τ ′ <: Γx(xret) ∃τ ′ . τ ′ <: τ ∧ τ ′ <: Γx(x)

xret = new m(x) : new τ(τ y) Z⇒ xret 7→ target, x 7→ y
(CONSTRUCTOR)

∃τ ′ . τ ′ <: τthis ∧ τ ′ <: Γx(xthis)

∃τ ′ . τ ′ <: τret ∧ τ ′ <: Γx(xret) ∃τ ′ . τ ′ <: τ ∧ τ ′ <: Γx(x)

return xret(xthis.m(x)) : eom(τthis.m(τ y) : τret) Z⇒ xret 7→ result, xthis 7→ target, x 7→ y
(EOM)

∃τ ′ . τ ′ <: τthis ∧ τ ′ <: Γx(xthis) ∃τ ′ . τ ′ <: τ ∧ τ ′ <: Γx(x)

begin(xthis.m(x)) : bom(τthis.m(τ y))) Z⇒ xthis 7→ target, x 7→ y
(BOM)

Figure B.23: Instruction binding.

In order to check a constraint, the analysis must determine whether a source instruction, called
instr, matches the operation op defined by a constraint, and it must bind up source variables x
to specification variables y, as contained in β. The rules for are defined in Figure B.23. The rules
match variables appropriately and ensure that there exists some typing possibility that would
make them compatible. These rules can be expanded to allow for new types of operations.
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A; B; ρ; cons ` instr ↪→ δ, γ Assume cons = op : Pctx ⇒ Preq ⇓ Q̄;Prst

instr : op Z⇒ β Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q̄) findLabels(A; Γy ;β) = Σ

Σ 6= ∅ T = {σ, δ, γ | σ ∈ Σ ∧ A; B; ρ; σ ` cons ↪→ δ, α ∧ γ = α[β]}

T .σ = Σ δ ′ = tT .δ γ ′ = tT .γ
A; B; ρ; cons ` instr ↪→ δ ′, γ ′

(MATCH)

instr : op Z⇒ β Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q̄) findLabels(A; Γy ;β) = ∅
A; B; ρ; cons ` instr ↪→ ⊥(A),∅

(NO−ALIASES)

¬(instr : op Z⇒ β)

A; B; ρ; cons ` instr ↪→ ⊥(A),∅
(NO−MATCH)

Figure B.24: Check a single constraint on all possible alias bindings.

With these pieces in place, I will now show how to check a single constraint. This is done with
the judgment

A; B; ρ; cons ` instr ↪→ δ, γ

shown in Figure B.24. This judgment takes the environments and a constraint, and it determines
how to change the lattices for a given instruction. The lattice changes are represented in δ, and the
alias changes are represented in γ.

The analysis starts by checking whether the instruction matches the constrained operation
using the instruction matching rules from Figure B.23. If not, the rule (NO-MATCH) will apply. If
there is a match, it will also check whether the binding provided can produce any substitutions. If
no substitutions are available, then rule (NO-ALIASES) applies. Both of these rules produce no lattice
effects.

If there are substitutions, as shown in rule (MATCH), then the analysis must check this con-
straint for every aliasing configuration possible, as represented by Σ. This rule checks that for
each substitution σ, the constraint passes and produces the change lattices δ and α. The α for each
substitution is converted into a γ using the bindings for the instruction. Once the analysis has all
change lattices for each substitution, the analysis combines them together using the t operator
and returns the combined change lattices.

As seen in Figure B.24, the rule (MATCH) must check the validity of each possible substitution.
This is done with the judgment

A; B; ρ;σ ` cons ↪→ δ, α

The rules for this judgment, shown in Figure B.25, are the primary point of difference between the
variants of the analysis. The differences are highlighted for convenience. The rules for this judg-
ment will all use the function lattice to produce the relationship delta lattice when appropriate,
and they will use the restriction rules in Figure B.26 to produce the alias delta lattice.

Sound Variant. The sound variant first checks Ptrg[σ] under ρ. It uses this to determine which
rule applies. If Ptrg[σ] is True, as seen in rule (BOUND-T), then the analysis must check if Preq is
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True under ρ for all substitutions. If Preq is not True with all substitution from Σ, then the analysis
produces an error. If there is no error, the rule produces the effects dictated by the function lattice
and will produce effects based upon the restriction judgment. If Ptrg[σ] is False, then the analysis
uses rule (BOUND-F). In this situation the constraint does not trigger, so the requires predicate is not
checked. The analysis returns no delta lattice changes, and it returns σ so that this substitution is
not restricted.

In the case that Ptrg[σ] is Unknown, the sound variant proceeds in a similar manner to the
case where Ptrg[σ] is True as it must consider the possibility that the trigger predicate is actually
true, as seen in (BOUND-U) The only difference is in how it treats effects. The analysis must use the
polarizing operator to be conservative with the effects it is producing in case the trigger predicate
is actually false at runtime. Likewise, it will always produce the aliasing change effect σ.

Complete Variant. Like the sound variant, the complete variant starts by checking Ptrg[σ]

under ρ. If Ptrg[σ] is True, as seen in rule (BOUND-T), then the analysis must check Preq under ρ
given any substitution. As this is the complete variant, the analysis does not care whether Preq is
True or Unknown. If no substitutions work, either because none exist or because they all show Preq
to be false, then the analysis produces an error. Otherwise, the rule produces effects as expected. If
the analysis determines that Ptrg[σ] is False, then it uses the rule (BOUND-F). Like the sound variant,
the requires predicate is not checked, the analysis returns no delta lattice changes, and it returns σ
so that this substitution is not restricted.

Finally, if Ptrg[σ] is Unknown, the complete variant will not check Preq as it cannot be sure
whether the constraint is actually triggered and it should not produce an error. However, it must
still produce some conservative effects in case the constraint is triggered given a more concrete
lattice. Like the sound rule in the case of an unknown trigger, the rule uses the polarizing operator↑
∗ to produce only conservative effects, and it produces the aliasing change effect σ.

Pragmatic Variant. The pragmatic variant is a combination of the sound and complete vari-
ants. It has the same rule for False as the other two variants, (BOUND-F). The rule (BOUND-U) for
pragmatic is also the same as the rule (BOUND-U) for completeness. This means that this variant can
produce both false positives and false negatives. False negatives can occur when Ptrg is Unknown
under ρ, but a more precise lattice would have found Ptrg to be True and eventually generated
an error. False positives occur when Ptrg is True under ρ and Preq is Unknown under ρ, but Preq
would have been True under a more precise lattice.
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For all of these rules, cons = op : Pctx ⇒ Preq ⇓ Q̄;Prst

A; B; ρ;σ ` cons ↪→ δ, α (Pragmatic)

A; B; ρ ` Pctx[σ] True
allValidSubs(A;σ; FV(cons)) = Σ ∃ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True

lattice(A; B;σ; Q̄) = δ A; B; ρ;σ `α Prst ↪→ α

A; B; ρ;σ ` cons ↪→ δ, α
(BOUND−T)

A; B; ρ ` Pctx[σ] False
A; B; ρ;σ ` cons ↪→ ⊥(A), σ

(BOUND−F)

A; B; ρ ` Pctx[σ] Unknown
lattice(A; B;σ; Q̄) = δ

A; B; ρ;σ ` cons ↪→↑
∗ δ, σ

(BOUND−U)

A; B; ρ;σ ` cons ↪→ δ, α (Sound)

A; B; ρ ` Pctx[σ] True
allValidSubs(A;σ; FV(cons)) = Σ ∀ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True

lattice(A; B;σ; Q̄) = δ A; B; ρ;σ `α Prst ↪→ α

A; B; ρ;σ ` cons ↪→ δ, α
(BOUND−T)

A; B; ρ ` Pctx[σ] False
A; B; ρ;σ ` cons ↪→ ⊥(A), σ

(BOUND−F)

A; B; ρ ` Pctx[σ] Unknown
allValidSubs(A;σ; FV(cons)) = Σ ∀ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True

lattice(A; B;σ; Q̄) = δ

A; B; ρ;σ ` cons ↪→↑
∗ δ, σ

(BOUND−U)

A; B; ρ;σ ` cons ↪→ δ, α (Complete)

A; B; ρ ` Pctx[σ] True allValidSubs(A;σ; FV(cons)) = Σ

∃ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True ∨ A; B; ρ ` Preq[σ ′] Unknown
lattice(A; B;σ; Q̄) = δ A; B; ρ;σ `α Prst ↪→ α

A; B; ρ;σ ` cons ↪→ δ, α
(BOUND−T)

A; B; ρ ` Pctx[σ] False
A; B; ρ;σ ` cons ↪→ ⊥(A), σ

(BOUND−F)

A; B; ρ ` Pctx[σ] Unknown
lattice(A; B;σ; Q̄) = δ

A; B; ρ;σ ` cons ↪→↑
∗ δ, σ

(BOUND−U)

Figure B.25: Check a bound constraint.
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A; B; ρ;σ `α P ↪→ α (Sound and Complete)

Σ = allValidSubs(A;σ, FV(P))

∃σ ′ ∈ Σ. A; B; ρ ` P[σ ′] t t 6= False

A; B; ρ;σ `α P ↪→ σ
(RESTRICT−T−U−SOUND/COMPLETE)

Σ = allValidSubs(A;σ, FV(P))

∀σ ′ ∈ Σ. A; B; ρ ` P[σ ′] False

A; B; ρ;σ `α P ↪→ ⊥(σ)
(RESTRICT−F−SOUND/COMPLETE)

A; B; ρ;σ `α P ↪→ α (Pragmatic)

Σ = allValidSubs(A;σ, FV(P))

∃σ ′ ∈ Σ. A; B; ρ ` P[σ ′] True

A; B; ρ;σ `α P ↪→ σ
(RESTRICT−T−PRAGMATIC)

Σ = allValidSubs(A;σ, FV(P))

∀σ ′ ∈ Σ. A; B; ρ ` P[σ ′] t ∧ t 6= True

A; B; ρ;σ `α P ↪→ ⊥(σ)
(RESTRICT−F−U−PRAGMATIC)

Figure B.26: Restricting substitutions based on a predicate.

When the analysis is checking a constraint, it may find a restrict predicate and need to restrict
the aliases of a variable accordingly. This is done in the rule (BOUND-T) in Figure B.25. The rules
in Figure B.26 show how, given a predicate, the analysis determines which aliases to restrict. The
substitutions to restrict to are returned from the rule with the lattice α. As before, the pragmatic
variant works different from the sound and complete variants, as shown by the shading. The
sound and complete variants will only restrict a substitution σ if there are no possible ways to
make the predicate True or False, as seen in rule (RESTRICT-F-SOUND/COMPLETE). If there is any way
for the substitution to make the predicate True or Unknown, it will return σ as a potentially valid
substitution. This is the only way to safely restrict substitutions, but as Unknown is a fairly com-
mon result, it means that restriction happens only in rare circumstances when the analysis has
very precise knowledge.

The pragmatic variant attempts to rectify this by allowing for unsafe restrictions. In particular,
it treats Unknown the same way it treats False, as seen in rules (RESTRICT-T-PRAGMATIC) and (RESTRICT-F-

U-PRAGMATIC). This allows for more aggressive restrictions, which in practice are usually acceptable.
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fC;A;B(ρ, instr) = ρ ′,A ′

falias(A, instr) = A ′ T = {cons, δ, γ | cons ∈ C ∧ A ′; B; ρ; cons ` instr ↪→ δ, γ}

T .cons = C A ′ ⇐ (tT .γ) = A ′′ transfer(ρ,A ′′) ⇐ ( T .δ) = ρ ′

fC(A; B; ρ; instr) = ρ ′,A ′′ (FLOW−CONS)

Figure B.27: Flow function

Finally, I present the semantics for the flow function of the analysis in Figure B.27. The flow
function for the Fusion analysis checks all the individual constraints and produces the output
lattices for the instruction. The flow function starts by first calling the alias analysis to produce
the new alias lattice for the instruction. Then, using the judgments defined previously, the flow
function iterates through each constraint and receives the change lattices δ and γ. The γ lattices
are all combined using the t operator, and the changes are applies to the incoming alias lattice A ′

to produce the outgoing alias lattice A ′′.
The δ lattices are combined as well, but we use the operator here instead. This operator

will effectively remove the true∗ and false∗ elements from the lattice. This operator will allow
true∗ to be effectively changed to true as long as all the substitutions agreed to it and at least
one substitution definitely made the change to true; this preserves some precision even in cases
where there are a lot of Unknown predicates as long as at least one made a concrete change. Once
the analysis has the final change lattice δ, it transfers the lattice ρ into the new aliasing context A ′′

and applies the effects.
There are three final rules that are not used in the semantics above but are necessary for the

proofs in Appendix C, these are shown in Figure B.28. The first and second show that there is
a consistency between an A and a ρ or δ such that all labels in ρ or δ exist in A with the right
type and that the domain of ρ of δ contains all possible relationships that can be created under A.
The second shows the consistency between an A, a σ, and a Γy . This shows that under some A, σ
contains a valid substitution for every y in Γy .
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A ` ρ consistent

dom(ρ) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

< Γ`; L >` ρ consistent
(CONSISTENT−ρ)

A ` δ consistent

dom(δ) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

< Γ`; L >` δ consistent
(CONSISTENT−δ)

A ` σ validFor Γy

dom(σ) ⊇ dom(Γy) ∀ y : τ ∈ Γy . ∃ τ ′ . τ ′ <: Γ`(σ(y)) ∧ τ ′ <: τ

< Γ`; L >` σ validFor Γy
(σ−VALID)

Figure B.28: Consistency of ρ and validity of σ against A



Appendix C
Proofs of Soundness and Completeness

C.1 Soundness

Global soundness from local soundness, consistency, monotonicity, and sound aliasing and sound
boolean propagation.

Theorem 3. Soundness of Flow Function

forall der.

Bconc v Babs

Aconc v Aabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent

ρconc v ρabs

fC;Aabs;Babs(ρ
abs; instr) = ρabs

′
,Aabs

′′

exists der.

fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

ρconc
′ v ρabs ′

Aconc
′′ v Aabs

′′

Proof:

T abs = {cons, δ, γ | cons ∈ C ∧ Aabs
′
; Babs; ρabs; cons ` instr ↪→ δ, γ}

By inversion on fC;Aabs;Babs(ρ
abs; instr) = ρabs

′
,Aabs

′′

T abs.cons = C By inversion on fC;Aabs;Babs(ρ
abs; instr) = ρabs

′
,Aabs

′′

γabs = tT abs.γ By inversion on fC;Aabs;Babs(ρ
abs; instr) = ρabs

′
,Aabs

′′

Aabs
′′

= Aabs
′ ⇐ γabs By inversion on fC;Aabs;Babs(ρ

abs; instr) = ρabs
′
,Aabs

′′

165
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δabs = T abs.δ By inversion on fC;Aabs;Babs(ρ
abs; instr) = ρabs

′
,Aabs

′′

ρabs
′
= transfer(ρabs,Aabs

′′
) ⇐ δabs By inversion on fC;Aabs;Babs(ρ

abs; instr) = ρabs
′
,Aabs

′′

falias(Aabs; instr) = Aabs
′

By inversion on fC;Aabs;Babs(ρ
abs; instr) = ρabs

′
,Aabs

′′

falias(Aconc; instr) = Aconc
′

By Theorem Aliasing Flow Function Sound
Aconc

′ vA Aabs
′

By Theorem Aliasing Flow Function Sound
Aconc

′ ` ρconc ′
consistent By Theorem Aliasing Flow Function Preserves Consistency

∀ cons ∈ C .

Let Aabs
′
; Babs; ρabs; cons ` instr ↪→ δa, γa By construction of T abs

Aconc
′
; Bconc; ρconc; cons ` instr ↪→ δc, γc By Lemma Soundness of Single Constraint

δc v δa By Lemma Soundness of Single Constraint
γc v γa By Lemma Soundness of Single Constraint
Aconc

′ ` δc consistent By Lemma Consistency of a Single Constraint
dom(γc) ⊆ dom(Aconc

′
.L) By Lemma Consistency of a Single Constraint

Let T conc = {cons, δ, γ | cons ∈ C ∧ Aconc
′
; Bconc; ρconc; cons ` instr ↪→ δ, γ}

T conc.cons = C By set construction
Let δconc = T conc.δ By rule (EQJOIN)

δconc v δabs By Lemma eqjoin operator preserves v
Let γconc = tT conc.γ By rule (tδ)

γconc v γabs By Lemma tγ operator preserves v
Let Aconc

′′
= Aconc

′ ⇐ γ By rule (⇐A)

Aconc
′′ v Aabs

′′
By Lemma ⇐A preserves v

Let ρconc
′′

= transfer(ρconc,Aconc
′′
) Apply transfer function

Let ρconc
′
= ρconc

′′ ⇐ δconc By rule (⇐ρ)

ρconc
′ v ρabs ′

By Lemma ⇐ρ preserves v
fC;Aconc;Bconc(ρ

conc, instr) = ρconc
′
,Aconc

′′
By rule (FLOW-CONS)

�
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Lemma 1 (Soundness of Single Constraint).

forall deriv.

Aabs; ρabs; cons ` instr ↪→ δabs, γabs

Aconc v Aabs

Bconc v Babs

ρconc v ρabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent

exists deriv.

Aconc; ρconc; cons ` instr ↪→ δconc, γconc

δconc v δabs

γconc v γabs

Proof:
By case analysis on Aabs; ρabs; cons ` instr ↪→ δabs, γabs

Case:

instr : op Z⇒ β Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q̄) findLabels(Aabs; Γy ;β) = Σabs

Σabs 6= ∅ T abs = {σ, δ, γ|σ ∈ Σabs ∧ Aabs; Babs; ρabs; σ ` cons ↪→ δ, α ∧ γ = α[β]}

T abs.σ = Σabs δabs = tT abs.δ γabs = tT abs.γ
Aabs; Babs; ρabs;op : Pctx ⇒ Preq ⇓ Q̄;` instr ↪→ δabs, γabs

(MATCH)

Σconc = findLabels(Aconc; Γy ;β) By Lemma FindLabels returns subsets
Σconc ⊆ Σabs By Lemma FindLabels returns subsets
By case analysis on Σconc

Case: Σconc = ∅

Aconc; ρconc; cons ` instr ↪→ ignore(Aconc),∅ By rule (NO-MATCH)

∅ v γconc By rule vγ −∅
Aabs ` δabs consistent By Lemma consistency of a single constraint
Aconc ` ⊥(Aconc) consistent By Lemma ⊥ is consistent
⊥(Aconc) v δabs By rule vδ −δ

Case: Σconc 6= ∅

∀σ ∈ Σconc
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Aabs; Babs; ρabs; σ ` cons ↪→ δa, αa By σ ∈ Σabs
Aconc ` σ validFor Γy By Lemma FindLabels returns subsets
dom(σ) = dom(Γy) By Lemma FindLabels returns subsets
Aconc; Bconc; ρconc; σ ` cons ↪→ δc, αc

By Lemma Soundness of Fully Bound Check
δc v δa By Lemma Soundness of Fully Bound Check
αc v αa By Lemma Soundness of Fully Bound Check
dom(αc) = dom(σ) By Lemma bound constraint check consistent
Aconc ` δc consistent By Lemma bound constraint check consistent
Let γc = αc[β]

dom(γc) ⊆ dom(Lconc) By dom(β) ⊆ dom(Lconc)

γc v γa By Lemma subs preserves v

Let T conc = {σ, δ, γ | σ ∈ Σconc ∧ Aconc; Bconc; ρconc; σ ` cons ↪→ δ, α ∧ γ = α[β]}

T conc.σ = Σconc By set construction and quantifier
Let δconc = tT conc.δ
δconc v δabs By Lemma tδ preserves v and Lemma tδ is less precise than operands
Let γconc = tT conc.γ
γconc v γabs By Lemma tδ preserves v and Lemma tδ is less precise than operands

Case:
instr : op Z⇒ β findLabels(Aabs; Γy ;β) = ∅

Aabs; Babs; ρabs;op : Pctx ⇒ Preq ⇓ Q̄;` instr ↪→ ⊥(Aabs),∅
(NO−ALIASES)

Σconc = findLabels(Aconc; Γy ;β) By Lemma FindLabels returns subsets
Σconc ⊆ Σabs By Lemma FindLabels returns subsets
Σconc = ∅ By Σconc ⊂ Σabs
Aconc; Bconc; ρconc;op : Pctx ⇒ Preq ⇓ Q̄;` instr ↪→ ⊥(Aconc),∅ By rule (NO-ALIASES)

⊥(Aconc) v ⊥(Aabs) By rule v −⊥
∅ v ∅ By rule v −∅

Case:
¬(instr : op Z⇒ β)

Aabs; Babs; ρabs;op : Pctx ⇒ Preq ⇓ Q̄;` instr ↪→ ⊥(Aabs),∅
(NO−MATCH)

Aconc; Bconc; ρconc;op : Pctx ⇒ Preq ⇓ Q̄;` instr ↪→ ⊥(Aconc),∅ By rule (NO-MATCH)

⊥(Aconc) v ⊥(Aabs) By rule v −⊥
∅ v ∅ By rule v −∅

�
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Lemma 2 (Soundness of Fully Bound Check).

forall deriv.

cons = op : Pctx ⇒ Preq ⇓ Q̄;Prst

Aconc v Aabs

Bconc v Babs

ρconc v ρabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent
Aconc ` σ validFor FV(Pctx)

dom(σ) = dom(FV(Pctx))

Aabs; Babs; ρabs;σ ` cons ↪→ δabs, αabs

exists deriv.

Aconc; Bconc; ρconc;σ ` cons ↪→ δconc, αconc

δconc v δabs

αconc v αabs

Proof:
By case analysis on Aabs; Babs; ρabs;σ ` cons ↪→ δabs, αabs

Case:
Aabs; Babs; ρabs ` Pctx[σ] False

Aabs; Babs; ρabs;σ ` cons ↪→ ⊥(Aabs), σ
(BOUND−F−SOUND)

Aconc; Bconc; ρconc ` Pctx[σ] tc By Lemma Truth Checking Sound
tc v False By Lemma Truth Checking Sound
tc = False By inversion on tc v False
Aconc; Bconc; ρconc;σ ` cons ↪→ ⊥(Aconc),∅ By rule (BOUND-F-SOUND)

⊥(Aconc) v ⊥(Aabs) By Lemma ⊥ preserves v
σ v σ By rule (v −∅)

Case:

cons = op : Pctx ⇒ Preq ⇓ Q̄;Prst
Aabs; Babs; ρabs ` Pctx[σ] True allValidSubs(Aabs;σ; FV(cons)) = Σabs

∀ σ ′ ∈ Σabs . Aabs; Babs; ρ ` Preq[σ ′] True
lattice(Aabs; Babs;σ; Q̄) = δabs Aabs; Babs; ρabs;σ `α Prst ↪→ αabs

Aabs; Babs; ρabs;σ ` cons ↪→ δabs, αabs
(BOUND−T−SOUND)

Bconc; ρconc ` Pctx[σ] tc By Lemma Truth Checking Sound
tc v True By Lemma Truth Checking Sound
tc = True By inversion on tc v True
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Σconc = allValidSubs(Aconc;σ; FV(cons)) By Lemma ValidSubs returns subsets
∀ σ ∈ Σconc . Aconc ` σ validFor FV(cons) By Lemma ValidSubs returns subsets
∀ σ ∈ Σconc . Aconc ` σ validFor FV(Preq) By FV(Preq) ⊆ FV(cons)

Σconc ⊆ Σabs By Lemma ValidSubs returns subsets
∀ σ ′ ∈ Σconc . Babs; ρabs ` Preq[σ ′] True By Σc ⊆ Σa
lattice(Aconc; Bconc;σ; Q̄) = δconc By Lemma Lattice preserves precision
δconc v δabs By Lemma Lattice preserves precision
Aconc; Bconc; ρconc;σ `α Prst ↪→ αconc By Lemma Soundness of Restriction
αconc v αabs By Lemma Soundness of Restriction
Aconc; Bconc; ρconc;σ `full cons → δconc, σ By rule (BOUND-T-SOUND)

Case:

cons = op : Pctx ⇒ Preq ⇓ Q̄;Prst
Aabs; Babs; ρabs ` Pctx[σ] Unknown

allValidSubs(Aabs;σ; FV(cons)) = Σabs

∀ σ ′ ∈ Σabs . Aabs; Babs; ρ ` Preq[σ ′] True
lattice(Aabs; Babs;σ; Q̄) = δabs

Aabs; Babs; ρabs;σ ` cons ↪→↑
∗ δabs ′

, σ

(BOUND−U−SOUND)

Aconc; Bconc; ρconc ` Pctx[σ] tc By Lemma Truth Checking Sound
Case analysis on tc

Case: tc = True

Σconc = allValidSubs(Aconc;σ; FV(cons)) By Lemma ValidSubs returns subsets
∀ σ ∈ Σconc . Aconc ` σ validFor FV(cons) By Lemma ValidSubs returns subsets
Σconc ⊆ Σabs By Lemma ValidSubs returns subsets
∀ σ ′ ∈ Σconc . Bconc; ρconc ` Preq[σ ′] True

By Σc ⊆ Σa and Lemma Truth Checking Sound
lattice(Aconc; Bconc;σ; Q̄) = δconc By Lemma Lattice preserves precision
δconc v δabs ′

By Lemma Lattice preserves precision

Let δabs =
↑
∗ δabs ′

δabs
′ v δabs By Lemma

↑
∗ result is less precise

δconc v δabs By Lemma transitivity of v
Aconc; Bconc; ρconc;σ `α Prst ↪→ αconc

By Lemma Restriction less precise than substitution
αconc v σ By Lemma Restriction less precise than substitution
Aconc; Bconc; ρconc;σ ` cons ↪→ δconc, αconc By rule (BOUND-T-SOUND)

Case: tc = Unknown

Σconc = allValidSubs(Aconc;σ; FV(cons)) By Lemma ValidSubs returns subsets
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∀ σ ∈ Σconc . Aconc ` σ validFor FV(cons) By Lemma ValidSubs returns subsets
Σconc ⊆ Σabs By Lemma ValidSubs returns subsets
∀ σ ′ ∈ Σconc . Bconc; ρconc ` Preq[σ ′] True

By Σc ⊆ Σa and Lemma Truth Checking Sound
lattice(Aconc; Bconc;σ; Q̄) = δconc

′
By Lemma Lattice preserves precision

δconc
′ v δabs ′

By By Lemma Lattice preserves precision

Let δabs =
↑
∗ δabs ′

Let δconc =
↑
∗ δconc ′

δconc v δabs By Lemma
↑
∗ preserves v

σ v σ By rule vα − =

Aconc; Bconc; ρconc;σ ` cons ↪→ δconc, σ By rule (BOUND-U-SOUND)

Case: tc = False

Aconc; Bconc; ρconc;σ ` cons ↪→ ⊥(Aconc), σ By rule (BOUND-F-SOUND)

⊥(Aconc) v δabs By rule v −⊥
σ v σ By rule v − =

�

Lemma 3 (Soundness of Restriction).

forall deriv.

Aabs; Babs; ρabs;σ `α P ↪→ αabs

Aconc v Aabs

Bconc v Babs

ρconc v ρabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent

exists deriv.

Aconc; Bconc; ρconc;σ `α P ↪→ αconc

αconc v αabs

Proof:
By case analysis on Aabs; Babs; ρabs;σ `α P ↪→ αabs

Case:

Σabs = allValidSubs(Aabs;σ, FV(P))

∃σ ′ ∈ Σabs.Aabs; Babs; ρabs ` P[σ ′] ta ta 6= False

Aabs; Babs; ρabs;σ `α P ↪→ σ
(RESTRICT−T−U−SOUND/COMPLETE)
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Aconc; Bconc; ρconc;σ `α P ↪→ αconc By Lemma Restriction less precise than substitution
αconc v σ By Lemma Restriction less precise than substitution

Case:

Σabs = allValidSubs(Aabs;σ, FV(P))

∀σ ′ ∈ Σabs.Aabs; Babs; ρabs ` P[σ ′] False

Aabs; Babs; ρabs;σ `α P ↪→ ⊥(σ)
(RESTRICT−F−SOUND/COMPLETE)

Σconc = allValidSubs(Aconc;σ, FV(P)) By Lemma ValidSubs returns subsets
Σconc ⊆ Σabs By Lemma ValidSubs returns subsets
∀σ ′ ∈ Σconc

Aabs; Babs; ρabs ` P[σ ′] False By σ ′ ∈ Σabs
Aconc; Bconc; ρconc ` P[σ ′] False By Lemma Truth Checking Sound

∀σ ′ ∈ Σconc.Aconc; Bconc; ρconc ` P[σ ′] False By quantification above
Aconc; Bconc; ρconc;σ `α P ↪→ ⊥(σ) By rule (RESTRICT-F-SOUND/COMPLETE)

⊥(σ) v ⊥(σ) By vα − =

�

Lemma 4 (Truth Checking Sound).

forall deriv.

ρconc v ρabs

Aconc v Aabs

Bconc v Babs

Aconc ` σ validFor FV(P)

Aconc ` ρconc consistent

Aabs; Babs; ρabs ` P[σ] ta

exists deriv.

Aconc; Bconc; ρconc ` P[σ] tc

tc v ta

Proof:
By induction on ρabs ` P[σ] ta

Case:
ρabs(rel(y)[σ]) = ta

Aabs; Babs; ρabs ` rel(y)[σ] ta
(REL)
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Let R = rel(y)[σ]

R ∈ dom(ρconc) By Lemma σ valid and ρ consistent
Let tc = ρconc(R)

tc v ta By inversion on ρconc v ρabs
Aconc; Bconc; ρconc ` rel(y)[σ] tc By rule (REL)

Case:
Aabs; Babs; ρ ` S[σ] ta Babs(ytest[σ]) = ta ta 6= Unknown

Aabs; Babs; ρabs ` S/ytest[σ] True
(REL−TEST−T)

Aconc; Bconc; ρconc ` S[σ] tc By induction hypothesis
tc v ta
By case analysis on tc

Case: tc = True

Bconc(ytest[σ]) = True By Bconc v Babs

Aconc; Bconc; ρconc ` S/ytest[σ] True By rule (REL − TEST − T )

True v True By rule v − =

Case: tc = False

Bconc(ytest[σ]) = False By Bconc v Babs

Aconc; Bconc; ρconc ` S/ytest[σ] True By rule (REL − TEST − T )

True v True By rule v − =

Case: tc = Unknown

Contradiction with Bconc v Babs

Case:

Aabs; Babs; ρ ` S[σ] ta1 Babs(ytest[σ]) = ta2
ta1 6= Unknown ta2 6= Unknown ta1 6= ta2

Aabs; Babs; ρabs ` S/ytest[σ] False
(REL−TEST−F)

Aconc; Bconc; ρconc ` S[σ] tc1 By induction hypothesis
tc1 v ta1
By case analysis on tc1

Case: tc1 = True

Bconc(ytest[σ]) = tc2 By Bconc v Babs

tc2 = False By tc1 v ta1 and ta1 6= ta2 and Bconc v Babs

Aconc; Bconc; ρconc ` A/`test False By rule (REL − TEST − F)

False v False By rule v − =
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Case: tc1 = False

Bconc(ytest[σ]) = tc2 By Bconc v Babs

tc2 = False By tc1 v ta1 and ta1 6= ta2 and Bconc v Babs

Aconc; Bconc; ρconc ` A/`test False By rule (REL − TEST − F)

False v False By rule v − =

Case: tc1 = Unknown

Contradiction with Bconc v Babs

Case:
Aabs; Babs; ρabs ` S[σ] Unknown

Aabs; Babs; ρabs ` S/ytest[σ] Unknown
(REL−TEST−U1)

Aconc; Bconc; ρconc ` S[σ] tc By induction hypothesis
tc1 v Unknown By induction hypothesis
Let tc2 = Bconc(`test) By case analysis on tc1

Case: tc1 = True

Let tc2 = Bconc(ytest[σ])

By case analysis on tc1

Case: tc2 = True

Aconc; Bconc; ρconc ` S/ytest[σ] True By rule (REL − TEST − T )

True v Unknown By rule v −>

Case: tc2 = False

Aconc; Bconc; ρconc ` S/ytest[σ] False By rule (REL − TEST − F)

False v Unknown By rule v −>

Case: tc2 = Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown By rule (REL − TEST −U2)

Unknown v Unknown By rule v −>

Case: tc1 = False

Let tc2 = Bconc(ytest[σ])

By case analysis on tc1



C.1. SOUNDNESS 175

Case: tc2 = False

Aconc; Bconc; ρconc ` S/ytest[σ] True By rule (REL − TEST − T )

True v Unknown By rule v −>

Case: tc2 = True

Aconc; Bconc; ρconc ` S/ytest[σ] False By rule (REL − TEST − F)

False v Unknown By rule v −>

Case: tc2 = Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown By rule (REL − TEST −U2)

Unknown v Unknown By rule v −>

Case: tc1 = Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown By rule (REL − TEST −U1)

Unknown v Unknown By rule v −>

Case:
Babs(ytest[σ]) = Unknown Aabs; Babs; ρabs ` S[σ] ta

Aabs; Babs; ρabs ` S/ytest[σ] Unknown
(REL−TEST−U2)

Aconc; Bconc; ρconc ` A tc1 By induction hypothesis
tc1 v ta By induction hypothesis
By case analysis on tc1

Case: tc1 = True

Let tc2 = Bconc(ytest[σ])

By case analysis on tc2

Case: tc2 = True

Aconc; Bconc; ρconc ` S/ytest[σ] True By rule (REL − TEST − T )

True v Unknown By rule v −>

Case: tc2 = False

Aconc; Bconc; ρconc ` S/ytest[σ] False By rule (REL − TEST − F)

False v Unknown By rule v −>
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Case: tc2 = Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown By rule (REL − TEST −U2)

Unknown v Unknown By rule v −>

Case: tc1 = False

Let tc2 = Bconc(ytest[σ])

By case analysis on tc1

Case: tc2 = False

Aconc; Bconc; ρconc ` S/ytest[σ] True By rule (REL − TEST − T )

True v Unknown By rule v −>

Case: tc2 = True

Aconc; Bconc; ρconc ` S/ytest[σ] False By rule (REL − TEST − F)

False v Unknown By rule v −>

Case: tc2 = Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown By rule (REL − TEST −U2)

Unknown v Unknown By rule v −>

Case: tc1 = Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown By rule (REL − TEST −U1)

Unknown v Unknown By rule v −>

Case:
Aabs; Babs; ρabs ` A[σ] Unknown

Aabs; Babs; ρabs ` ¬A[σ] Unknown
(¬T−UNKNOWN)

Aconc; Bconc; ρconc ` A[σ] tc By induction hypothesis
tc v Unknown By induction hypothesis
By case analysis on the value of tc

Case: tc = True

Aconc; Bconc; ρconc ` ¬A False By rule (¬ − T − F)

False v Unknown By rule v −>



C.1. SOUNDNESS 177

Case: tc = False

Aconc; Bconc; ρconc ` ¬A True By rule (¬ − T − T )

True v Unknown By rule v −>

Case: tc = Unknown

Aconc; Bconc; ρconc ` ¬A Unknown By rule (¬ − T −U)

Unknown v Unknown By rule v −>

Case:
Aabs; Babs; ρabs ` A[σ]False

Aabs; Babs; ρabs ` ¬A[σ]True
(¬T−T)

Aconc; Bconc; ρconc ` A[σ] tc By induction hypothesis
tc v False By induction hypothesis
tc = False By inversion on tc v False
Aconc; Bconc; ρconc ` ¬A[σ] True By rule (¬ − T − T )

Case:
Aabs; Babs; ρabs ` A[σ]True

Aabs; Babs; ρabs ` ¬A[σ]False
(¬T−F)

Aconc; Bconc; ρconc ` A[σ] tc By induction hypothesis
tc v True By induction hypothesis
tc = True By inversion on tc v True
Aconc; Bconc; ρconc ` ¬A[σ] False By rule (¬ − T − F)

Case:
Aabs; Babs; ρabs ` true True

(TRUE)

Aconc; Bconc; ρconc ` true True By rule (TRUE)

True v True By rule v − =

Case:
Aabs; Babs; ρabs ` false False

(FALSE)

Aconc; Bconc; ρconc ` false False By rule (FALSE)

False v False By rule v − =

Remaining cases work as expected for a three value logic.

�
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C.2 Completeness

Theorem 4. Completeness of Relations Analysis

forall der.

Bconc v Babs

Aconc v Aabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent

ρconc v ρabs

fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

exists der.

fC;Aabs;Babs(ρ
abs, instr) = ρabs

′
,Aabs

′′

ρconc
′ v ρabs ′

Aconc
′′ v Aabs

′′

Proof:

T conc = {cons, δ, γ|cons ∈ C ∧ Aconc
′
; Bconc; ρconc; cons ` instr ↪→ δ, γ}

By inversion on fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

T conc.cons = C By inversion on fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

γconc = tT conc.γ By inversion on fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

Aconc
′′

= Aconc
′ ⇐ γconc By inversion on fC;Aconc;Bconc(ρ

conc; instr) = ρconc
′
,Aconc

′′

δconc = T conc.δ By inversion on fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

ρconc
′
= transfer(ρconc,Aconc

′′
) ⇐ δconc

By inversion on fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

falias(Aconc; instr) = Aconc
′

By inversion on fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

falias(Aabs; instr) = Aabs
′

By Theorem Aliasing Flow Function Complete
Aconc

′ vA Aabs
′

By Theorem Aliasing Flow Function Complete
Aabs

′ ` ρabs ′
consistent By Theorem Aliasing Flow Function Preserves Consistency

∀ cons ∈ C .

Let Aconc
′
; Bconc; ρconc; cons ` instr ↪→ δc, γc By construction of T conc

Aabs
′
; Babs; ρabs; cons ` instr ↪→ δa, γa By Lemma Completeness of Single Constraint

δc v δa By Lemma Completeness of Single Constraint
γc v γa By Lemma Completeness of Single Constraint
Aabs

′ ` δa consistent By Lemma Consistency of a Single Constraint
dom(γa) ⊆ dom(Aabs

′
.L) By Lemma Consistency of a Single Constraint

Let T abs = {cons, δ, γ | cons ∈ C ∧ Aabs
′
; Babs; ρabs; cons ` instr ↪→ δ, γ}

T conc.cons = C By set construction
Let δabs = tT abs.δ By rule (EQJOIN)
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δconc v δabs By Lemma eqjoin operator preserves v
Let γabs = tT abs.γ By rule (tγ)

γconc v γabs By Lemma tγ operator preserves v
Let Aabs

′′
= Aabs

′ ⇐ γ By rule (⇐A)

Aconc
′′ v Aabs

′′
By Lemma ⇐A preserves v

Let ρabs
′′

= transfer(ρabs,Aabs
′′
) Apply function transfer

Let ρabs
′
= ρabs

′′ ⇐ δabs By rule (⇐ρ)

ρconc
′ v ρabs ′

By Lemma ⇐ρ preserves v
fC(Aabs; Babs; ρabs, instr) = ρabs

′
,Aabs

′′
By rule (FLOW-CONS)

�

Lemma 5 (Completeness of Single Constraint).

forall deriv.

Aconc; ρconc; cons ` instr ↪→ δconc, γconc

Aconc v Aabs

Bconc v Babs

ρconc v ρabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent

exists deriv.

Aabs; ρabs; cons ` instr ↪→ δabs, γabs

δconc v δabs

γconc v γabs

Proof:
By case analysis on Aconc; ρconc; cons ` instr ↪→ δconc, γconc

Case:

instr : op Z⇒ β

Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q̄) findLabels(Aconc; Γy ;β) = Σconc Σconc 6= ∅
T conc = {σ, δ, γ | σ ∈ Σconc ∧ Aconc; Bconc; ρconc; σ ` cons ↪→ δ, α ∧ γ = α[β]}

T conc.σ = Σconc δconc = tT conc.δ γconc = tT conc.γ
Aconc; Bconc; ρconc;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ δconc, γconc

(MATCH)

Σabs = findLabels(Aabs; Γy ;β) = Σabs By Lemma FindLabels returns subsets
Σconc ⊆ Σabs By Lemma FindLabels returns subsets
∀σ ∈ Σabs.A ` σ validFor Γy ∧ dom(σ) = dom(Γy) By Lemma FindLabels returns subsets
Σabs 6= ∅ By Σconc 6= ∅ ∧ Σconc ⊆ Σabs
∀ σ ∈ Σconc .
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Aabs; Babs; ρabs;σ ` cons ↪→ δa, αa By Lemma Completeness with Full Substitution
δc v δa By Lemma Completeness with Full Substitution
αc v αa By Lemma Completeness with Full Substitution
αc[β] v αa[β] By Lemma substitution preserves v

Let T = {σ, δ, γ | σ ∈ Σabs ∧ Aabs; Babs; ρabsσ ` δ, γ ∧ γ = α[β]}

T .σ = Σabs By Lemma bound passes when σ valid
Let δabs = tT .δ
δconc v δabs By Lemma t preserves v and Lemma t less precise than operands
Let γabs = tT .γ
γconc v γabs By Lemma t preserves v and Lemma t less precise than operands
Aabs; Babs; ρabs;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ δabs, γabs By rule (MATCH)

Case:
instr : op Z⇒ β findLabels(Aconc; Γy ;β) = ∅

Aconc; Bconc; ρconc;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ ⊥(Aconc),∅
(NO−ALIASES)

Let Σabs = findLabels(Aabs; Γy ;β) By set construction
Case analysis on the structure of Σabs

Case: Σabs = ∅

Aconc; Bconc; ρconc;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ ⊥(Aconc),∅
By rule (NO-ALIASES)

⊥(Aconc) v ⊥(Aabs) By Lemma ⊥maintains v
∅ v ∅ By rule v −∅

Case: Σabs 6= ∅

Let T = {σ, δ, γ | σ ∈ Σabs ∧ Aabs; Babs; ρabsσ ` δ, γ ∧ γ = α[β]}

T .σ = Σabs By Lemma bound passes when σ valid
Let δabs = tT .δ
⊥(Aconc) v δabs By rule v −⊥
Let γabs = tT .γ
∅ v γabs By rule v −∅
Aabs; Babs; ρabs;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ δabs, γabs By rule (MATCH)

Case:
¬(instr : op Z⇒ β)

Aconc; Bconc; ρconc;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ ⊥(Aconc),∅
(NO−MATCH)
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Aabs; Babs; ρabs;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ ⊥(Aabs),∅ By rule (NO-MATCH)

⊥(Aconc) v ⊥(Aabs) By Lemma ⊥ preserves v
∅ v ∅ By rule v −∅

�
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Lemma 6 (Completeness with Full Substitution).

forall deriv.

Aconc vA Aabs

Bconc vB Babs

ρconc v ρabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent
Aconc; Bconc; ρconc;σ ` cons → δconc, αconc

Aconc ` σ validFor Γy
Γy = Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q)

exists deriv.

Aabs; Babs; ρabs;σ ` cons → δabs, αabs

δconc v δabs

αconc v αabs

Proof:
By case analysis on Aconc; Bconc; ρconc;σ ` cons → δconc, αconc

Case:
Aconc; Bconc; ρconc ` Pctx[σ] False

Aconc; Bconc; ρconc;σ ` op : Pctx ⇒ Preq ⇓ Q̄;Prst ↪→ ⊥(Aconc), σ
(BOUND−F)

Aabs; Babs; ρabs ` Pctx[σ] ta By Lemma Truth Checking Complete
False v ta By Lemma Truth Checking Complete
By case analysis on the value of ta

Case: ta = False

Aabs; Babs; ρabs;σ ` cons ↪→ ⊥(Aabs), σ By rule (BOUND-F)

⊥(Aconc) v ⊥(Aabs) By Lemma ⊥ preserves v
σ v σ By rule v − =

Case: ta = True

Invalid case by False v ta

Case: ta = Unknown

lattice(Aabs; Babs;σ; Q̄) = δabs By applying function lattice

Let δabs =
↑
∗ δabs ′
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Aabs; Babs; ρabs;σ ` cons ↪→ δabs, σ By rule (BOUND-U)

Aabs ` δabs ′
consistent By lattice consistent

Aabs ` δabs consistent By
↑
∗ preserves consistent

Aconc ` ⊥(Aconc) consistent By Lemma ⊥ is consistent
⊥(Aconc) v δabs By Lemma ⊥ is less precise
σ v σ By rule v − =

Case:

cons = op : Pctx ⇒ Preq ⇓ Q̄;Prst
Aconc; Bconc; ρconc ` Pctx[σ] True allValidSubs(Aconc;σ; FV(cons)) = Σconc

∃ σ ′ ∈ Σconc . Aconc; Bconc; ρconc ` Preq[σ ′] True ∨ Aconc; Bconc; ρconc ` Preq[σ ′] Unknown
lattice(Aconc; Bconc;σ; Q̄) = δconc Aconc; Bconc; ρconc;σ `α Prst ↪→ αconc

Aconc; Bconc; ρconc;σ ` cons ↪→ δconc, αconc
(BOUND−T)

Aabs; Babs; ρabs ` Pctx[σ] ta By Lemma Truth Checking Complete
True v ta By Lemma Truth Checking Complete
By case analysis on ta

Case: ta = True

Σabs = allValidSubs(Aabs;σ; FV(cons)) By Lemma ValidSubs returns subsets
Σconc ⊆ Σabs By Lemma ValidSubs returns subsets
∃ σ ′ ∈ Σabs . Aconc; Bconc; ρconc ` Preq[σ ′] True ∨

Aconc; Bconc; ρconc ` Preq[σ ′] Unknown By Σconc ⊆ Σabs
∃ σ ′ ∈ Σabs . Aabs; Babs; ρabs ` Preq[σ ′] True ∨

Aabs; Babs; ρabs ` Preq[σ ′] Unknown By Lemma Truth Checking Complete
lattice(Aabs; Babs;σ; Q̄) = δabs By applying function lattice
Aabs; Babs; ρabs;σ `α Prst ↪→ αabs By Lemma Completeness of Restriction
Aabs; Babs; ρabs;σ ` cons → δabs, σ By rule (BOUND-T)

δconc v δabs By Lemma Lattice preserves precision
αconc v αabs By Lemma Completeness of Restriction

Case: ta = False

Invalid case by True v ta

Case: ta = Unknown

lattice(Aabs; Babs;σ; Q̄) = δabs By applying function lattice
δconc v δabs ′

By Lemma Lattice preserves precision

Let δabs =
↑
∗ δabs ′

δabs
′ v δabs By Lemma polar less precise than operand
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δconc v δabs By Lemma transitivity of v
Aabs; Babs; ρabs;σ ` cons ↪→ δabs, σ By rule (BOUND-U)

αconc v σ By Lemma restrict less precise than substitution

Case:
Aconc; Bconc; ρconc ` Pctx[σ] Unknown lattice(Aconc; Bconc;σ; Q̄) = δconc

Aconc; Bconc; ρconc;σ ` op : Pctx ⇒ Preq ⇓ Q̄;Prst ↪→↑
∗ δconc, σ

(BOUND−U)

Aabs; Babs; ρabs ` Pctx[σ] ta By Lemma Truth Checking Complete
Unknown v ta By Lemma Truth Checking Complete
Aabs; Babs; ρabs ` Pctx[σ] Unknown By inversion on Unknown v ta
lattice(Aabs; Babs;σ; Q̄) = δabs By applying function lattice
δconc

′ v δabs ′
By Lemma Lattice preserves precision↑

∗ δconc v
↑
∗ δabs By Lemma

↑
∗ preserves v

σ v σ By rule v − =

Aabs; Babs; ρabs;σ ` cons ↪→ δabs, αabs By rule (BOUND-U)

�

Lemma 7 (Completeness of Restriction).

forall deriv.

Aconc; Bconc; ρconc;σ `α P ↪→ αconc

Aconc v Aabs

Bconc v Babs

ρconc v ρabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent

exists deriv.

Aabs; Babs; ρabs;σ `α P ↪→ αabs

αconc v αabs

Proof:
By case analysis on Aconc; Bconc; ρconc;σ `α P ↪→ αconc

Case:

Σconc = allValidSubs(Aconc;σ, FV(P))

∃σ ′ ∈ Σconc.Aconc; Bconc; ρconc ` P[σ ′] tc tc 6= False
Aconc; Bconc; ρconc;σ `α P ↪→ σ

(RESTRICT−T−U−SOUND/COMPLETE)

Σabs = allValidSubs(Aabs;σ, FV(P)) By applying function allValidSubs
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Σconc ⊆ Σconc By Lemma ValidSubs returns subsets
∃σ ′ ∈ Σabs.Aconc; Bconc; ρconc ` P[σ ′] tc By Σconc ⊆ Σconc
∃σ ′ ∈ Σabs.Aabs; Babs; ρabs ` P[σ ′] ta By Lemma Truth Checking Complete
tc v ta By Lemma Truth Checking Complete
tc 6= False By tc v ta and tc 6= False
Aabs; Babs; ρabs;σ `α P ↪→ σ By rule (RESTRICT-T-U-SOUND/COMPLETE)

σ v σ By rule (v − =)

Case:

Σconc = allValidSubs(Aconc;σ, FV(P))

∀σ ′ ∈ Σconc.Aconc; Bconc; ρconc ` P[σ ′] False
Aconc; Bconc; ρconc;σ `α P ↪→ ⊥(σ)

(RESTRICT−F−SOUND/COMPLETE)

Σabs = allValidSubs(Aabs;σ, FV(P)) By applying function allValidSubs
Σconc ⊆ Σabs By Lemma ValidSubs returns subsets
∀σ ′ ∈ Σabs.Aabs; Babs; ρabs ` P[σ ′] ta By Lemma consistency of truth checking
Case on property of Σabs

Case: ∀σ ′ ∈ Σabs.Aabs; Babs; ρabs ` P[σ ′] False

Aabs; Babs; ρabs;σ `α P ↪→ σ By rule (RESTRICT-F-SOUND/COMPLETE)

⊥(σ) v σ By rule (v −⊥)

Case: ∃σ ′ ∈ Σabs.Aabs; Babs; ρabs ` P[σ ′] ta ∧ ta 6= False

tc v ta By Lemma Truth Checking Complete
tc 6= False By tc v ta and tc 6= False
Aabs; Babs; ρabs;σ `α P ↪→ σ By rule (RESTRICT-T-U-SOUND/COMPLETE)

⊥(σ) v σ By rule (v −⊥)

�
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Lemma 8 (Truth Checking Complete).

forall deriv.

ρconc v ρabs

Aconc v Aabs

Bconc v Babs

Aabs ` σ validFor FV(P)

Aabs ` ρabs consistent
Aconc; Bconc; ρconc ` P[σ]tc

exists deriv.

Aabs; Babs; ρabs ` P[σ]ta

tc v ta

Proof:
By induction on ρconc ` P[σ] ta

Case:
ρconc(rel(y)[σ]) = tc

Aconc; Bconc; ρconc ` rel(y)[σ] tc
(REL)

Let R = rel(y)[σ]

R ∈ dom(ρabs) By Lemma σ valid and ρ consistent
Let ta = ρabs(R)

tc v ta By inversion on ρconc v ρabs
Aabs; Babs; ρabs ` rel(y)[σ] ta By rule (REL)

Case:
Aconc; Bconc; ρ ` S[σ] tc Bconc(ytest[σ]) = tc tc 6= Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] True
(REL−TEST−T)

Aabs; Babs; ρabs ` A ta By induction hypothesis
tc v ta By induction hypothesis
By case analysis on tc

Case: tc = True

By case analysis on Babs(`test)

Case: Babs(`test) = True
By case analysis on ta

Case: ta = True
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Aabs; Babs; ρabs ` A/`test True By rule (REL-TEST-T)

True v True By rule v − =

Case: ta = False
Invalid case by ρconc v ρabs

Case: ta = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U1)

True v Unknown By rule v −Unknown

Case: Babs(`test) = False
Invalid case by Bconc vB Babs

Case: Babs(`test) = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U2)

Case: tc = False

By case analysis on Babs(`test)

Case: Babs(`test) = False
By case analysis on ta

Case: ta = False
Aabs; Babs; ρabs ` A/`test False By rule (REL-TEST-F)

False v False By rule v − =

Case: ta = True
Invalid case by ρconc v ρabs

Case: ta = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U1)

False v Unknown By rule v −Unknown

Case: Babs(`test) = True
Invalid case by Bconc vB Babs

Case: Babs(`test) = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U2)

Case: tc = Unknown
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Invalid case by tc 6= Unknown

Case:

Aconc; Bconc; ρ ` S[σ] tc1 Bconc(ytest[σ]) = tc2
tc1 6= Unknown tc2 6= Unknown tc1 6= tc2

Aconc; Bconc; ρconc ` S/ytest[σ] False
(REL−TEST−F)

Aabs; Babs; ρabs ` A ta1 By induction hypothesis
tc1 v ta1 By induction hypothesis
By case analysis on tc1

Case: tc1 = True

tc2 = False By tc1 6= tc2 and tc1 6= Unknown
By case analysis on Babs(`test)

Case: Babs(`test) = False
By case analysis on ta1
Case: ta1 = True

Aabs; Babs; ρabs ` A/`test False By rule (REL-TEST-F)

False v False By rule v − =

Case: ta1 = False
Invalid case by ρconc v ρabs

Case: ta1 = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U1)

False v Unknown By rule v −Unknown

Case: Babs(`test) = True
Invalid case by Bconc vB Babs

Case: Babs(`test) = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U2)

Case: tc1 = False

tc2 = True By tc1 6= tc2 and tc1 6= Unknown
By case analysis on Babs(`test)

Case: Babs(`test) = True
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By case analysis on ta1
Case: ta1 = False

Aabs; Babs; ρabs ` A/`test False By rule (REL-TEST-F)

False v False By rule v − =

Case: ta1 = True
Invalid case by ρconc v ρabs

Case: ta1 = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U1)

False v Unknown By rule v −Unknown

Case: Babs(`test) = False
Invalid case by Bconc vB Babs

Case: Babs(`test) = Unknown
Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U2)

Case: tc1 = Unknown

Invalid case by ta1 6= Unknown

Case:
Aconc; Bconc; ρconc ` S[σ] Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown
(REL−TEST−U1)

Babs; ρabs ` A ta By induction hypothesis
Unknown v ta By induction hypothesis
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U1)

Unknown v Unknown By rule v −Unknown

Case:
Bconc(ytest[σ]) = Unknown Aconc; Bconc; ρconc ` S[σ] ta

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown
(REL−TEST−U2)

Aabs; Babs; ρabs ` A ta By induction hypothesis
tc v ta By induction hypothesis
Babs(`test) = Unknown By Bconc vB Babs

Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U2)

Unknown v Unknown By rule v −Unknown
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Case:
Aconc; Bconc; ρconc ` A[σ] Unknown

Aconc; Bconc; ρconc ` ¬A[σ] Unknown
(¬T−UNKNOWN)

Aabs; Babs; ρabs ` S ta By induction hypothesis
Unknown v ta By induction hypothesis
Aabs; Babs; ρabs ` ¬S Unknown By rule (¬S −U)

Unknown v Unknown By rule v −Unknown

Case:
Aconc; Bconc; ρconc ` A[σ]False
Aconc; Bconc; ρconc ` ¬A[σ]True

(¬T−T)

Aabs; Babs; ρabs ` S ta By induction hypothesis
False v ta By induction hypothesis
By case analysis on the value of ta

Case: ta = False

Aabs; Babs; ρabs ` ¬S True By rule (¬S − T )

True v True By rule v − =

Case: ta = True

Contradiction with False v ta

Case: ta = Unknown

Aabs; Babs; ρabs ` ¬S Unknown By rule (¬S −U)

True v Unknown By rule v − =

Case:
Aconc; Bconc; ρconc ` A[σ]True

Aconc; Bconc; ρconc ` ¬A[σ]False
(¬T−F)

Aabs; Babs; ρabs ` S ta By induction hypothesis
True v ta By induction hypothesis
By case analysis on the value of ta

Case: ta = True

Aabs; Babs; ρabs ` ¬S False By rule (¬S − F)

False v False By rule v − =
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Case: ta = False

Contradiction with True v ta

Case: ta = Unknown

Aabs; Babs; ρabs ` ¬S Unknown By rule (¬S −U)

False v Unknown By rule v − =

Case:
Aconc; Bconc; ρconc ` trueTrue

(TRUE)

Aabs; Babs; ρabs ` trueTrue By rule (TRUE)

True v True By rule v − =

Case:
Aconc; Bconc; ρconc ` falseFalse

(FALSE)

Aabs; Babs; ρabs ` falseFalse By rule (FALSE)

False v False By rule v − =

Remaining cases work as expected for a three value logic.

�
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C.3 Consistency

Theorem 5. Consistency

forall deriv.

A ` ρ consistent
falias(A, instr) = A ′

fC;A ′;B(ρ; instr) = ρ ′,A ′′

exists deriv.

A ′′ ` ρ ′ consistent

Proof:

T = {cons, δ, γ|cons ∈ C ∧ A ′; B; ρ; cons ` instr ↪→ δ, γ}

By inversion on fC;A ′;B(ρ; instr) = ρ ′,A ′′

T .cons = C By inversion on fC;A ′;B(ρ; instr) = ρ ′,A ′′

γ = (tT .γ) By inversion on fC;A ′;B(ρ; instr) = ρ ′,A ′′

A ′′ = A ′ ⇐ γ By inversion on fC;A ′;B(ρ; instr) = ρ ′,A ′′

δ = (tT .δ) By inversion on fC;A ′;B(ρ; instr) = ρ ′,A ′′

ρ ′ = transfer(ρ,A ′′) ⇐ δ By inversion on fC;A ′;B(ρ; instr) = ρ ′,A ′′

A ′ ` ρ consistent By Lemma Aliasing Flow preserves Consistency
∀cons ∈ C

A ′; B; ρ; cons ` instr ↪→ δ, γ By construction of T
A ′ ` δ consistent By Lemma Consistency of a Single Constraint
dom(γ) ⊆ dom(A ′.L) By Lemma Consistency of a Single Constraint

A ′ ` δ consistent By Lemma tδ operator preserves consistency
dom(γ) ⊆ dom(A ′.L) By Lemma tγ preserves domains
A ′′ ` δ consistent By Lemma ⇐A preserves consistent
A ′′ ` transfer(ρ,A ′′) consistent By Lemma transfer is consistent
A ′′ ` ρ ′ consistent By Lemma ⇐ preserves consistency

�
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Lemma 9 (Consistency of a Single Constraint).

forall deriv.

A ` ρ consistent
A; B; ρ; cons ` instr ↪→ δ, γ

exists deriv.

A ` δ consistent
dom(γ) ⊆ dom(A.L)

Proof:
By case analysis on A; ρ; cons ` instr ↪→ δ, γ

Case:

Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q̄) instr : op Z⇒ β findLabels(A; Γy ;β) = Σ

Σ 6= ∅ T = {σ, δ, γ|σ ∈ Σ ∧ A; B; ρ; σ ` cons ↪→ δ, α ∧ γ = α[β]}

T .σ = Σ δ ′ = tT .δ γ ′ = tT .γ
A; B; ρ;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ δ ′, γ ′

(MATCH)

∀σ ∈ Σ

A; B; ρ; σ ` cons ↪→ δ, α By construction of T
γ = α[β] By construction of T
A ` δ consistent By Lemma Consistency of Full Binding
rng(β) ⊆ dom(A.L) By Lemma matching uses valid variables
dom(γ) ⊆ dom(A.L) By substitution

A ` δ consistent By Lemma t preserves consistency
dom(γ ′) ⊆ dom(A.L) By Lemma t preserves domain

Case:
cons = op : Pctx ⇒ Preq ⇓ Q;Prst instr : op Z⇒ β findLabels(A; Γy ;β) = ∅

A; B; ρ;op : Pctx ⇒ Preq ⇓ Q̄;` instr ↪→ ignore(A),∅
(NO−ALIASES)

A ` ignore(A) consistent By Lemma ignore is consistent
∅ ⊆ dom(A.L) By rule (⊆ −∅)

Case:
cons = op : Pctx ⇒ Preq ⇓ Q;Prst ¬(instr : op Z⇒ β)

A; B; ρ; cons ` instr ↪→ ignore(A),∅
(NO−MATCH)

A ` ignore(A) consistent By Lemma ignore is consistent
∅ ⊆ dom(A.L) By rule (⊆ −∅)
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�

Lemma 10 (Consistency of Full Binding).

forall deriv.

cons = op : Pctx ⇒ Preq ⇓ Q;Prst

A ` σ validFor FV(Q̄)

A ` ρ consistent
A; B; ρ;σ ` cons ↪→ δ, α

exists deriv.

A ` δ consistent
dom(α) = dom(σ)

Proof:

By case analysis on all variants of A; B; ρ;σ ` cons ↪→ δ, α

Case:

A; B; ρ ` Pctx[σ] True
allValidSubs(A;σ; FV(cons)) = Σ ∃ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True

lattice(A; B;σ; Q̄) = δ A; B; ρ;σ `α Prst ↪→ α

A; B; ρ;σ ` cons ↪→ δ, α
(BOUND−T−PRAGMATIC)

A ` δ consistent By Lemma Consistency of Lattice
dom(α) = dom(σ) By Lemma Consistency of Restriction

Case:
A; B; ρ ` Pctx[σ] False

A; B; ρ;σ ` cons ↪→ ⊥(A), σ
(BOUND−F−PRAGMATIC)

A ` ⊥(A) consistent By Lemma ⊥ consistent
dom(σ) = dom(σ) By equality

Case:

A; B; ρ ` Pctx[σ] Unknown
lattice(A; B;σ; Q̄) = δ

A; B; ρ;σ ` cons ↪→↑
∗ δ, σ

(BOUND−U−PRAGMATIC)

A ` δ consistent By Lemma Consistency of Lattice

A `
↑
∗ δ consistent By Lemma

↑
∗ preserves consistent

dom(σ) = dom(σ) By equality
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Case:

A; B; ρ ` Pctx[σ] True
allValidSubs(A;σ; FV(cons)) = Σ ∀ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True

lattice(A; B;σ; Q̄) = δ A; B; ρ;σ `α Prst ↪→ α

A; B; ρ;σ ` cons ↪→ δ, α
(BOUND−T−SOUND)

A ` δ consistent By Lemma Consistency of Lattice
dom(α) = dom(σ) By Lemma Consistency of Restriction

Case:
A; B; ρ ` Pctx[σ] False

A; B; ρ;σ ` cons ↪→ ⊥(A), σ
(BOUND−F−SOUND)

A ` ⊥(A) consistent By Lemma ⊥ consistent
dom(σ) = dom(σ) By equality

Case:

A; B; ρ ` Pctx[σ] Unknown
allValidSubs(A;σ; FV(cons)) = Σ ∀ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True

lattice(A; B;σ; Q̄) = δ

A; B; ρ;σ ` cons ↪→↑
∗ δ, σ

(BOUND−U−SOUND)

A ` δ consistent By Lemma Consistency of Lattice

A `
↑
∗ δ consistent By Lemma

↑
∗ preserves consistent

dom(σ) = dom(σ) By equality

Case:

A; B; ρ ` Pctx[σ] True allValidSubs(A;σ; FV(cons)) = Σ

∃ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True ∨ A; B; ρ ` Preq[σ ′] Unknown
lattice(A; B;σ; Q̄) = δ A; B; ρ;σ `α Prst ↪→ α

A; B; ρ;σ ` cons ↪→ δ, α
(BOUND−T−COMPLETE)

A ` δ consistent By Lemma Consistency of Lattice
dom(α) = dom(σ) By Lemma Consistency of Restriction

Case:
A; B; ρ ` Pctx[σ] False

A; B; ρ;σ ` cons ↪→ ⊥(A), σ
(BOUND−F−COMPLETE)

A ` ⊥(A) consistent By Lemma ⊥ consistent
dom(σ) = dom(σ) By equality
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Case:

A; B; ρ ` Pctx[σ] Unknown
lattice(A; B;σ; Q̄) = δ

A; B; ρ;σ ` cons ↪→↑
∗ δ, σ

(BOUND−U−COMPLETE)

A ` δ consistent By Lemma Consistency of Lattice

A `
↑
∗ δ consistent By Lemma

↑
∗ preserves consistent

dom(σ) = dom(σ) By equality

�

Lemma 11 (Consistency of Lattice).

forall deriv.

A ` σ validFor FV(Q)

lattice(A; B;σ; Q̄) = δ

exists deriv.

A ` δ consistent

Lemma 12 (Consistency of Restriction).

forall deriv.

A; B; ρ;σ;`α P → α

exists deriv.

dom(α) = dom(σ)

Lemma 13 (Consistency and precision implies domains are subset).

∀ deriv.
< Γc` ; L

c >` ρc consistent
< Γa` ; La >` ρa consistent
< Γc` ; L

c >vA< Γ
a
` ; La >

∃ deriv.
dom(ρc) ⊆ dom(ρa)

Proof:

dom(ρc) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γc` (`i)}

By inversion on < Γc` ; L
c >` ρc consistent



C.3. CONSISTENCY 197

dom(ρa) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γa` (`i)}

By inversion on < Γa` ; La >` ρa consistent
∀rel(¯̀) ∈ dom(ρc) . τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γc` (`i)

By construction of dom(ρc)

dom(Γa` ) = dom(Γc` ) By inversion on < Γc` ; L
c >vA< Γ

a
` ; La >

∀ ` : τ ∈ Γc` . τ <: Γa` (`) By inversion on < Γc` ; L
c >vA< Γ

a
` ; La >

∀ rel(¯̀) ∈ dom(ρc) . τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γa` (`i)

By <: transitive
∀ rel(¯̀) ∈ dom(ρc) . rel(¯̀) ∈ dom(ρa) By construction of dom(ρa)

dom(ρc) ⊆ dom(ρa) By ⊆

�

Lemma 14 (σ valid and ρ consistent gives R ∈ ρ).

forall deriv.

< Γ`; L >` σ validFor FV(rel(ȳ))

< Γ`; L >` ρ consistent
exists deriv.

rel(ȳ)[σ] ∈ dom(ρ)

Proof:

dom(σ) ⊇ dom(Γy) By inversion on < Γ`; L >` σ validFor FV(rel(ȳ))

∀ y : τ ∈ Γy . ∃ τ ′ . τ ′ <: Γ`(σ(y)) ∧ τ ′ <: τ By inversion on < Γ`; L >` σ validFor FV(rel(ȳ))

dom(ρ) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

By inversion on < Γ`; L >` ρ consistent
ȳ = dom(FV(rel(ȳ))) By inversion on FV
Let τ̄ = R(rel)
¯̀ = ȳ[σ] By dom(σ) ⊇ dom(Γy)

|¯̀| = |ȳ| = |τ̄| = n By substitution and typing of rel
Let Γy = FV(rel(ȳ))

Γy = y0 : τ0, . . . , yn : τn By inversion of FV
∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i) By dom(σ) ⊇ dom(Γy)

rel(ȳ)[σ] ∈ dom(ρ) By construction of the domain of ρ

�
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Lemma 15 (Consistency implies same domain, ρ/ρ).

∀ deriv.
< Γ`; L >` ρ1 consistent
< Γ`; L >` ρ2 consistent

∃ deriv.
dom(ρ1) = dom(ρ2)

Lemma 16 (Consistency implies same domain, ρ/δ).

∀ deriv.
< Γ`; L >` ρ consistent
< Γ`; L >` δ consistent

∃ deriv.
dom(ρ) = dom(δ)

Lemma 17 (Consistency implies same domain, δ/δ).

∀ deriv.
< Γ`; L >` δ1 consistent
< Γ`; L >` δ2 consistent

∃ deriv.
dom(δ1) = dom(δ2)

Lemma 18 ( consistent and v causes subset domains on δ).

∀ deriv.
Aconc v Aconc

Aconc ` δconc

Aabs ` δabs

∃ deriv.
dom(δconc) ⊆ dom(δabs)

Lemma 19 ( consistent and v causes subset domains on ρ).

∀ deriv.
Aconc v Aconc

Aconc ` ρconc

Aabs ` ρabs

∃ deriv.
dom(ρconc) ⊆ dom(ρabs)
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Lemma 20 (tδ operator preserves consistency).

∀ deriv.
A ` δl consistent
A ` δr consistent

∃ deriv.
δl t δr = δ

A ` δ consistent

Proof: Trivially true. �

Lemma 21 (tγ operator preserves v).

∀ deriv.
γconcl v γabsl

γconcr v γabsr

γconcl t γconcr = γconc

γabsl t γabsr = γabs

∃ deriv.
γconc v γabs

Proof: Trivially true. �
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C.4 Function Lemmas

Lemma 22 (FindLabels returns subsets).

forall deriv.

< Γc` ,L
c >vA< Γ

a
` ,L

a >

dom(β) ⊆ dom(Γy)

rng(β) ⊆ dom(Lc)

rng(β) ⊆ dom(La)

exists deriv.

findLabels(< Γa` ,L
a >, Γy , β) = Σa

findLabels(< Γc` ,L
c >, Γy , β) = Σc

Σc ⊆ Σa

∀σ ∈ Σc. < Γc` ,Lc >` σ validFor Γy ∧ dom(σ) = dom(Γy)

∀σ ∈ Σa. < Γa` ,La >` σ validFor Γy ∧ dom(σ) = dom(Γy)

Proof:

findLabels(< Γa` ,L
a >, Γy , β) = Σa By applying function findLabels

Σa = {σ ′ | dom(σ) = dom(β) ∧ σ = {y 7→ ` | ` ∈ La(β(y)) ∧

∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)} ∧ allValidSubs(< Γa` ; La >;σ; Γy) = Σa
′

∧ σ ∈ Σa ′
}

By definition of findLabels
findLabels(< Γc` ,L

c >, Γy , β) = Σc By applying function findLabels
Σc = {σ ′ | dom(σ) = dom(β) ∧ σ = {y 7→ ` | ` ∈ Lc(β(y)) ∧

∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y)} ∧ allValidSubs(< Γc` ; L
c >;σ; Γy) = Σc

′
∧ σ ∈ Σc ′

}

By definition of findLabels
∀ σ ′ ∈ Σc .

Let σ = {y 7→ ` | ` ∈ Lc(β(y)) ∧ ∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y)} ∧ dom(σ) = dom(β)

By set construction
allValidSubs(< Γc` ; L

c >;σ; Γy) = Σc
′

By set construction
dom(σ) ⊆ dom(Γy) By subsets
allValidSubs(< Γa` ; La >;σ; Γy) = Σa

′
By Lemma ValidSubs returns subsets

Σc
′ ⊆ Σa ′

By Lemma ValidSubs returns subsets
σ ′ ∈ Σc ′

By set construction
σ ′ ∈ Σa ′

By subsets
σ ′ ∈ Σa By set construction

Σc ⊆ Σa
∀σ ∈ Σc. < Γc` ,Lc >` σ validFor Γy ∧ dom(σ) = dom(Γy) By Lemma ValidSubs returns subsets
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∀σ ∈ Σa. < Γa` ,La >` σ validFor Γy ∧ dom(σ) = dom(Γy) By Lemma ValidSubs returns subsets

�

Lemma 23 (ValidSubs returns subsets).

forall deriv.

< Γc` ; L
c >vA< Γ

a
` ; La >

dom(σ) ⊆ dom(Γy)

exists deriv.

allValidSubs(< Γa` ; La >;σ; Γy) = Σa

allValidSubs(< Γc` ; L
c >;σ; Γy) = Σc

∀ σ ∈ Σa . < Γa` ; La >` σ validFor Γy ∧ dom(σ) = dom(Γy)

∀ σ ∈ Σc . < Γc` ; Lc >` σ validFor Γy ∧ dom(σ) = dom(Γy)

Σc ⊆ Σa

Proof:

allValidSubs(< Γa` ; La >;σ; Γy) = (Σta, Σ
u
a) By applying function allValidSubs

Let Σa = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧

∀ y 7→ ` ∈ σ ′ . ∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)}

∀σ ∈ Σa . dom(σ) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ . ∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)By construction of Σa

∀σ ∈ Σa . < Γa` ; La >` σ validFor Γy By rule (σ − VALID)

allValidSubs(< Γc` ; L
c >;σ; Γy) = Σc By applying function allValidSubs

Let Σc = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧

∀ y 7→ ` ∈ σ ′ . ∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y)}

∀σ ∈ Σc . dom(σ) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ . ∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y)By construction of Σc

∀σ ∈ Σc . < Γc` ; Lc >` σ validFor Γy By rule (σ − VALID)

dom(Lc) = dom(La) By inversion on < Γc` ; L
c >vA< Γ

a
` ; La >

dom(Γc` ) ⊆ dom(Γa` ) By inversion on < Γc` ; L
c >vA< Γ

a
` ; La >

∀ ` ′ : τ ′ ∈ Γc` . τ ′ <: Γa` (` ′) By inversion on < Γc` ; L
c >vA< Γ

a
` ; La >

∀ x ′ 7→ {`} ∈ Lc. {`} ⊆ La(x ′) ∧ {`} 6= ∅ By inversion on < Γc` ; L
c >vA< Γ

a
` ; La >

∀ ` ∈ dom(Γc` ) . Γ
c
` (`) <: Γa` (`) By rewriting

∀ x ∈ dom(Lc) . Lc(x) ⊆ La(x) ∧ Lc(x) 6= ∅ By rewriting
∀ σ ′ ∈ Σc .

σ ′ ⊇ σ By construction of σ ′

dom(σ ′) = dom(Γy) By construction of σ ′

∀ (y 7→ `) ∈ σ ′ .
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∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y) By construction of σ ′

∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y) By Γc` (`) <: Γa` (`)

∀ (y 7→ `) ∈ σ ′ . ∃τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)

σ ′ ∈ Σa By construction of Σa

Σc ⊆ Σa By quantification above

�

Lemma 24 (Restriction less precise than substitution).

forall deriv.

A ` ρ consistent
exists deriv.

A; B; ρ;σ `α P 7→ α

α v σ

Proof:

Σ = allValidSubs(A;σ; FV(P)) By applying function allValidSubs
By case analysis on the property of Σ

Case: ∃σ ′ ∈ Σ.A; B; ρ ` P[σ ′] t ∧ t 6= False

A; B; ρ;σ `α P 7→ σ By rule (RESTRICT-T-U-SOUND/COMPLETE)

σ v σ By rule vα − =

Case: ¬∃σ ′ ∈ Σ.A; B; ρ ` P[σ ′] t ∧ t 6= False

∀σ ′ ∈ Σ.A; B; ρ ` P[σ ′] False By rewriting
A; B; ρ;σ `α P 7→ ⊥(σ) By rule (RESTRICT-F-SOUND/COMPLETE)

⊥(σ) v σ By rule vα −⊥

�
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Lemma 25 (Lattice preserves precision).

forall deriv.

Ac v Aa

Bc v Ba

Ac ` σ validFor FV(Q̄)

Aa ` σ validFor FV(Q̄)

dom(sigma) = dom(FV(Q̄))

exists deriv.

lattice(Ac; Bc;σ; Q̄) = δc

lattice(Aa; Ba;σ; Q̄) = δa

δc v δa

Proof:

By induction on the structure of Q̄:

Case: Q̄ = Q, Q̄ ′

lattice(Ac; Bc;σ;Q) = δc1 By induction hypothesis
lattice(Aa; Ba;σ;Q) = δa1 By induction hypothesis
δc1 v δa1 By induction hypothesis
lattice(Ac; Bc;σ; Q̄ ′) = δc2 By induction hypothesis
lattice(Aa; Ba;σ; Q̄ ′) = δa2 By induction hypothesis
δc2 v δa2 By induction hypothesis
Let δc = δc1 δc2
Let δa = δa1 δa1
lattice(Ac; Bc;σ;Q, Q̄ ′) = δc By rule (LATTICE-LIST)

lattice(Aa; Ba;σ;Q, Q̄ ′) = δa By rule (LATTICE-LIST)

δc v δa By Lemma preserves v

Case: Q̄ = ∅

lattice(Ac; Bc;σ; ∅) = ignore(Ac) By rule (LATTICE − ∅)

lattice(Aa; Ba;σ; ∅) = ignore(Aa) By rule (LATTICE − ∅)

ignore(Ac) v ignore(Aa) By Lemma ignore preserves v

Case: Q̄ = Q
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Σc = allValidSubs(Ac;σ; FV(Q)) By applying function allValidSubs
Σa = allValidSubs(Ac;σ; FV(Q)) By applying function allValidSubs
Σc ⊆ Σa By Lemma ValidSubs returns subsets
Let δc

′
= δ ′ = {R 7→ E | σ ′ ∈ Σc ∧ value(B;Q[σ ′]) = R 7→ E}

Let δa
′
= δ ′ = {R 7→ E | σ ′ ∈ Σa ∧ value(B;Q[σ ′]) = R 7→ E}

dom(δc
′
) ⊆ dom(δa

′
) By Σc ⊆ Σa

∀σ ′ ∈ Σc .

Ac ` σ ′ validFor FV(Q) By Lemma ValidSubs returns subsets
Aa ` σ ′ validFor FV(Q) By Lemma ValidSubs returns subsets
value(Bc, Q[σ ′]) = R 7→ Ec By Lemma Lattice value preserves precision
value(Ba, Q[σ ′]) = R 7→ Ea By Lemma Lattice value preserves precision
Ec v Ea By Lemma Lattice value preserves precision

∀R 7→ Ec ∈ δc ′
. Ec v δa ′

(R) By quantification
δc

′ v δa ′
By rule (vδ)

Let δc = ignore(Ac) δc
′

Let δa = ignore(Aa) δa
′

lattice(Ac; Bc;σ;Q) = δc By rule (LATTICE-Q)

lattice(Aa; Ba;σ;Q) = δa By rule (LATTICE-Q)

ignore(Ac) v ignore(Aa) By Lemma ignore preserves v
δc v δa By Lemma preserves v

�

Lemma 26 (Lattice value preserves precision).

forall deriv.

Ac v Aa

Bc v Ba

Ac ` σ validFor FV(Q̄)

Aa ` σ validFor FV(Q̄)

exists deriv.

value(Bc, Q[σ]) = R 7→ Ec

value(Ba, Q[σ]) = R 7→ Ea

Ec v Ea

Proof:

By induction on the structure of Q:
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Case: Q = S

R = S[σ]

value(Bc, R) = R 7→ true By definition of value
value(Ba, R) = R 7→ true By definition of value
True v True By rule v − =

Case: Q = ¬S

R = A[σ]

value(Bc,¬R) = R 7→ false By definition of value
value(Ba,¬R) = R 7→ false By definition of value
False v False By rule v − =

Case: Q = S/y

R = S[σ]

` = σ(y) value(Bc, R/`) = R 7→ Bc(`) By definition of value
value(Ba, R/`) = R 7→ Ba(`) By definition of value
Bc(`) v Ba(`) By inversion on Bc v Ba

Case: Q = ¬S/y

R = S[σ]

` = σ(y) value(Bc,¬R/`) = R 7→ ¬Bc(`) By definition of value
value(Ba,¬R/`) = R 7→ ¬Ba(`) By definition of value
Bc(`) v Ba(`) By inversion on Bc v Ba

¬Bc(`) v ¬Ba(`) By Lemma ¬ preserves v

�

Lemma 27 (ignore preserves v).

∀ deriv.
Aconc v Aabs

ignore(Aconc) = δconc

ignore(Aabs) = δabs

∃ deriv.
αconc v αabs
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Lemma 28 (findLabels and v produces subsets).

∀ deriv.
Aconc v Aabs

Σabs = findLabels(Aabs; Γy[
];β)

Σconc = findLabels(Aconc; Γy[
];β)

∃ deriv.
Σconc ⊆ Σabs
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C.5 Operator Lemmas

All proofs in this section are omitted as they are trivially reproducible from the rules of the opera-
tors.

Lemma 29 (tδ operator preserves v).

∀ deriv.
δconcl v δabsl

δconcr v δabsr

δconcl t δconcr = δconc

δabsl t δabsr = δabs

∃ deriv.
δconc v δabs

Lemma 30 (eqjoin operator preserves v).

∀ deriv.
δconcl v δabsl

δconcr v δabsr

δconcl δconcr = δconc

δabsl δabsr = δabs

∃ deriv.
δconc v δabs

Note: The proof for this is a tedious case-by-case proof, and I used the Agda lemma prover to
verify that all cases were covered.

Lemma 31 (
↑
∗δ operator preserves v).

∀ deriv.
δconc v δabs

∃ deriv. ↑
∗ δconc v

↑
∗ δabs



208 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Lemma 32 (ovrMeets operator preserves v).

∀ deriv.
δconcl v δabsl

δconcr v δabsr

δconcl δconcr = δconc

δabsl δabsr = δabs

∃ deriv.
δconc v δabs

Lemma 33 (tγ operator preserves v).

∀ deriv.
γconcl v γabsl

γconcr v γabsr

γconcl t γconcr = γconc

γabsl t γabsr = γabs

∃ deriv.
γconc v γabs

Lemma 34 (⇐A preserves v).

∀ deriv.
Aconc v Aabs

γconc v γabs

Aconc ⇐ γconc = Aconc
′

Aabs ⇐ γabs = Aabs
′

∃ deriv.

Aconc
′ v Aabs

′

Lemma 35 (tδ less precise than operands).

∀ deriv.
d1 : δ = δl t δr

∃ deriv.
d2 : δl v δ
d3 : δr v δ
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Lemma 36 (tγ less precise than operands).

∀ deriv.
d1 : γ = γl t γr

∃ deriv.
d2 : γl v γ
d3 : γr v γ

Lemma 37 (
↑
∗δ less precise than operand).

∀ deriv.

δ ′ =
↑
∗ δ

∃ deriv.

δ v
↑
∗ δ ′

Lemma 38 (⇐ρ preserves v).

∀ deriv.
d1 : ρconc v ρabs

d2 : δconc v δabs

d3 : ρconc ⇐ δconc = ρconc
′

d4 : ρabs ⇐ δabs = ρabs
′

∃ deriv.

d5 : ρconc
′ v ρabs ′

Lemma 39 (Substitution preserves vα).

∀ deriv.
d1 : αconc v αabs
d2 : αconc[β] = αconc ′

d3 : αabs[β] = αabs ′

∃ deriv.

d4 : αconc
′ v αabs ′
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